Advertisement

Evaluating Deep Neural Networks to Classify Modulated and Coded Radio Signals

  • Phui San Cheong
  • Miguel Camelo
  • Steven Latré
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 261)

Abstract

Cognitive Radio (CR) systems allow optimizing the use of the shared radio spectrum and enhancing the coexistence among different technologies by efficiently changing certain operating parameters of the radios such as transmit-power, carrier frequency, and modulation and coding scheme in real-time. Dynamic Spectrum Access (DSA), which allows radios to dynamically access and use the unused spectrum, is one of the tasks that are fundamental for a better use of the spectrum. In this paper, we extend the previous work on Automatic Modulation Classification (AMC) by using Deep Neural Network (DNNs) and evaluate the performance of these architectures on signals that are not only modulated but are also encoded. We call this the Automatic Modulation and Coding Scheme Classification problem, or \(AMC^2\). In this problem, radio signals are classified according to the Modulation and Coding Scheme (MCS) used during their transmission. Evaluations on a data set of 802.11 radio signals, transmitted with different MCS and Signal to Noise Ratio (SNR), provide important results on the impact of some DNN hyperparameters, e.g. number of layers, batch size, etc., in the classification accuracy.

Keywords

Cognitive Radio Dynamic Spectrum Access Deep Neural Network Convolutional Neural Network Modulation and Coding Scheme 

References

  1. 1.
    Garhwal, A., Bhattacharya, P.P.: A survey on dynamic spectrum access techniques for cognitive radio. arXiv preprint arXiv:1201.1964 (2012)
  2. 2.
    Nolan, K.E., Doyle, L., O’Mahony, D., Mackenzie, P.: Modulation scheme recognition techniques for software radio on a general purpose processor platform. In: Proceedings of the First Joint IEI/IEE Symposium on Telecommunication Systems, Dublin (2001)Google Scholar
  3. 3.
    O’shea, T.J., Clancy, T.C., Ebeid, H.J.: Practical signal detection and classification in gnu radio. In: SDR Forum Technical Conference (SDR) (2007)Google Scholar
  4. 4.
    O’Shea, T., Hoydis, J.: An introduction to deep learning for the physical layer. IEEE Trans. Cogn. Commun. Netw. 3(4), 563–575 (2017)CrossRefGoogle Scholar
  5. 5.
    Hazza, A., Shoaib, M., Alshebeili, S.A., Fahad, A.: An overview of feature-based methods for digital modulation classification. In: 2013 1st International Conference on Communications, Signal Processing, and Their Applications (ICCSPA), pp. 1–6 (2013)Google Scholar
  6. 6.
    Azzouz, E.E., Nandi, A.K.: Modulation recognition using artificial neural networks. In: Azzouz, E.E., Nandi, A.K. (eds.) Automatic Modulation Recognition of Communication Signals, pp. 132–176. Springer, Boston (1996).  https://doi.org/10.1007/978-1-4757-2469-1_5. ISBN 978-1-4757-2469-1CrossRefGoogle Scholar
  7. 7.
    Swami, A., Sadler, B.: Modulation classification via hierarchical agglomerative cluster analysis. In: First IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications. IEEE (1997)Google Scholar
  8. 8.
    Zhao, Z., Zhou, Y., Mei, F., Li, J.: Automatic modulation classification by support vector machines. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3173, pp. 654–659. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28647-9_107. ISBN 978-3-540-28647-9CrossRefGoogle Scholar
  9. 9.
    Kim, K., Polyodoros, A.: Digital modulation recognition: the BPSK versus QPSK case. In: MILCOM (1988)Google Scholar
  10. 10.
    Yang, G.Q.: Modulation classification based on extensible neural networks. Math. Prob. Eng. 2017, 10 (2017).  https://doi.org/10.1155/2017/6416019. Article ID 6416019CrossRefGoogle Scholar
  11. 11.
    Nandi, A.K., Azzouz, E.E.: Algorithms for automatic modulation recognition of communication signals. IEEE Trans. Commun. 46(4), 431–436 (1998)CrossRefGoogle Scholar
  12. 12.
    Peng, S., et al.: Modulation classification based on signal constellation diagrams and deep learning. IEEE Trans. Neural Netw. Learn. Syst. 99, 1–10 (2018)Google Scholar
  13. 13.
    Iversen, A.: The use of artificial neural networks for automatic modulation recognition, December 2003. http://www.macs.hw.ac.uk/cs/techreps/docs/files/HW-MACS-TR-0009.pdf
  14. 14.
    Ramakonar, V.S.: Modulation classification of digital communication signals (2002). http://ro.ecu.edu.au/theses/752
  15. 15.
    Zhang, D., et al.: Automatic modulation classification based on deep learning for unmanned aerial vehicles. Sensors 18(3), 924 (2018)CrossRefGoogle Scholar
  16. 16.
    O’Shea, K., Nash, R.: An introduction to convolutional neural networks (2015). https://arxiv.org/abs/1511.08458
  17. 17.
    O’Shea, T.J., Corgan, J., Clancy, T.C.: Convolutional radio modulation recognition networks. https://arxiv.org/abs/1602.04105
  18. 18.
    Kulin, M., et al.: End-to-end learning from spectrum data: a deep learning approach for wireless signal identification in spectrum monitoring applications. IEEE Access 6, 18484–18501 (2018)CrossRefGoogle Scholar
  19. 19.
    Ali, A., Yangyu, F., Liu, S.: Automatic modulation classification of digital modulation signals with stacked autoencoders. Digit. Sig. Process. 71, 108–116 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Mendis, G.J., Wei, J., Madanayake, A.: Deep: learning-based automated modulation classification for cognitive radio. In: 2016 IEEE International Conference on Communication Systems (ICCS), Shenzhen, pp. 1–6 (2016).  https://doi.org/10.1109/ICCS.2016.7833571
  21. 21.
    Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). ISBN 9780262035613zbMATHGoogle Scholar
  22. 22.
    Louis, C., Sehier, P.: Automatic modulation recognition with a hierarchical neural network. In: Proceedings of MILCOM 1994, Fort Monmouth, NJ, USA, vol. 3, pp. 713–717 (1994)Google Scholar
  23. 23.
    Dobre, O.A., Abdi, A., Bar-Ness, Y., Su, W.: Survey of automatic modulation classification techniques: classical approaches and new trends. IET Commun. 1(2), 137–156 (2007).  https://doi.org/10.1049/iet-com:20050176CrossRefGoogle Scholar
  24. 24.
    Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. Published as a Conference Paper at ICLR 2015, July 2015. https://arxiv.org/pdf/1412.6980v8.pdf
  25. 25.
    Mathworks Documentation. WLAN System Toolbox. https://nl.mathworks.com/help/wlan/
  26. 26.
    Liu, X., Yang, D., El Gamal, A.: Deep neural network architectures for modulation classification. arXiv preprint arXiv:1712.00443 (2017)

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • Phui San Cheong
    • 1
  • Miguel Camelo
    • 2
  • Steven Latré
    • 2
  1. 1.University of AntwerpAntwerpBelgium
  2. 2.IDLab Research Group, Department of Mathematics and Computer ScienceUniversity of Antwerp - imecAntwerpBelgium

Personalised recommendations