Advertisement

Exotic Meats: An Alternative Food Source

  • Rubén DomínguezEmail author
  • Mirian Pateiro
  • Paulo E. S. Munekata
  • Mohammed Gagaoua
  • Francisco J. Barba
  • José Manuel Lorenzo
Chapter

Abstract

Exotic meats were a protein source for human diet for many years. However, the massive capture caused the overexploitation and placed many reptiles and amphibious on the verge of extinction. Therefore, the captive rearing, the control during slaughtering and processing has been proposed as an alternative to the capture of wild animals. The present chapter shows the nutritional composition of this kind of meat, characterized by low levels of fat, high contents of protein, essential amino acids, fatty acids (especially long-chain n-3) and minerals indicating that their consumption may be beneficial for human health. However, very little data is available on the nutritional value of these meats. To concluded, exotic meat is an interesting alternative to be considered as a component of the human diet. In addition, the farming of exotic species could be important in the economy of some regions or countries.

Keywords

Crocodile Snake and lizards Frog Turtle 

Notes

Acknowledgements

Paulo E. S. Munekata acknowledges postdoctoral fellowship support from Ministry of Economy and Competitiveness (MINECO, Spain) “Juan de la Cierva” program (FJCI-2016-29486). José M. Lorenzo and Paulo E. S. Munekata are members of the MARCARNE network, funded by CYTED (ref.116RT0503).

References

  1. Abulude FO (2007) Determination of the chemical composition of bush meats found in Nigeria. Am J Food Technol 2(3):153–160CrossRefGoogle Scholar
  2. Ali ME, Nina Naquiah AN, Mustafa S, Hamid SBA (2015) Differentiation of frog fats from vegetable and marine oils by fourier transform infrared spectroscopy and chemometric analysis. Croat J Food Sci Technol 7(1):1–8CrossRefGoogle Scholar
  3. Altherr S, Goyenechea A, Schubert DJ (2011). Canapés to extinction: The international trade in frog’s legs and it ecological impact. A report by Pro Wildlife, Defenders of Wildlife and Animal Welfare Institute (eds.), Munich (Germany), Washington, DC (USA)Google Scholar
  4. Alves RRN, Vieira KS, Santana GG, Vieira WLS, Almeida WO, Souto WMS et al (2012) A review on human attitudes towards reptiles in Brazil. Environ Monit Assess 184:6877–6901CrossRefGoogle Scholar
  5. Arenas de Moreno L, Vidal A, Huerta-Sánchez D, Navas Y, Uzcátegui-Bracho S, Huerta-Leidenz N (2000) Análisis comparativo proximal y de minerales entre carnes de iguana, pollo y res. Arch Latinoam Nutr 50(4):409–415Google Scholar
  6. Bahar TB, Gurbuz DR, Özyurt G (2008) Nutritional composition of frog (Rana esculenta) waste meal. Bioresour Technol 99:1332–1338CrossRefGoogle Scholar
  7. Bertolini R, Zgrabic G, Cuffolo E (2005) Wild game meat: products, market, legislation and processing controls. Vet Res Commun 29(2):97–100CrossRefGoogle Scholar
  8. Blé YC, Yobouet BA, Dadié A (2016) Consumption, proximate and mineral composition of edible frog Hoplobatrachus occipitalis from midwest areas of Côte d’Ivoire. AJSR 5(3):16–20Google Scholar
  9. Bressani R (1977) Función de las especies de animales menores en la nutrición y producción de alimentos. Boletin de la oficina sanitaria panamericana 1:206–215Google Scholar
  10. Cagiltay F, Erkan N, Selcuk O, Devrim Tosun S (2014) Chemical composition of wild and cultured marsh frog (Rana Ridibunda). Bulgarian J Agr Sci 20(5):1250–1254Google Scholar
  11. Çaklı Ş, Kışla D, Cadun A, Dinçer T, Cağlak E (2009) Determination of shelf life in fried and boiled frog meat stored in refrigerator in 3.2±1.08 C. J Fish Aquat Sci 26(2):115–119Google Scholar
  12. Caldironi HA, Manes ME (2006) Proximate composition, fatty acids and cholesterol content of meat cuts from tegu lizard Tupinambis merianae. J Food Compos Anal 19(6–7):711–714CrossRefGoogle Scholar
  13. Cawthorn DM, Hoffman LC (2016) Controversial cuisine: a global account of the demand, supply and acceptance of “unconventional” and “exotic” meats. Meat Sci 120:19–36CrossRefGoogle Scholar
  14. Černíková M, Gál R, Polášek Z, Janíček M, Pachlová V, Buňka F (2015) Comparison of the nutrient composition, biogenic amines and selected functional parameters of meat from different parts of Nile crocodile (Crocodylus niloticus). J Food Compos Anal 43:82–87CrossRefGoogle Scholar
  15. Chen CY, Huang CH (2015) Effects of dietary magnesium on the growth, carapace strength and tissue magnesium concentrations of soft-shelled turtle, Pelodiscus sinensis (Wiegmann). Aquac Res 46(9):2116–2123CrossRefGoogle Scholar
  16. Chen CY, Chen SM, Huang CH (2014) Dietary magnesium requirement of soft-shelled turtles, Pelodiscus sinensis, fed diets containing exogenous phytate. Aquaculture 432:80–84CrossRefGoogle Scholar
  17. Chen LP, Huang CH (2011) Effects of dietary β-carotene levels on growth and liver vitamin A concentrations of the soft-shelled turtle, Pelodiscus sinensis (Wiegmann). Aquac Res 42(12):1848–1854CrossRefGoogle Scholar
  18. Cortez CAB (2016) Estudio químico analítico de la grasa de iguana verde (Iguana iguana) y su efecto cicatrizante y antiinflamatorio sobre lesiones inducidas en ratas. Ágora Revista Científica 3(1):248–256Google Scholar
  19. Cossu ME, Gonzáles OM, Wawrzkiewicz M, Moreno D, Vieites CM (2007) Carcass and meat characterization of“ yacare overo”(Caiman latirostris) and“ yacare negro”(Caiman yacare). Braz J Vet Res Anim Sci 44(5):329–336CrossRefGoogle Scholar
  20. Daszak P, Schloege L, Louise M, Cronin A, Pokras M, Smith K, Picco A (2006) The global trade in amphibians: summary interim report of a CCM study in report of the consortium for conservation medicine. Consortium for Conservation Medicine, New YorkGoogle Scholar
  21. Davis BC, Kris-Etherton PM (2003) Achieving optimal essential fatty acid status in vegetarians: current knowledge and practical implications. Am J Clin Nutr 78:640–646CrossRefGoogle Scholar
  22. Delgado S, Nichols WJ (2005) Saving sea turtles from the ground up: awakening sea turtle conservation in northwestern Mexico. Marit Stud 4:89–104Google Scholar
  23. Gill CO (2007) Microbiological conditions of meats from large game animals and birds. Meat Sci 77:149–160CrossRefGoogle Scholar
  24. Gonçalves AA, Otta MCM (2008) Aproveitamento da carne da carcaça de rã-touro gigante no desenvolvimento de hambúrguer. Rev Bras Enga Pesca 3(2):7–15Google Scholar
  25. González, Olmedo G, Farnés OC, Martín MI, Fernández RD, Andreu GN, Martínez CD et al (2004) Cultural, social and nutritional values of sea turtles in Cuba. Research Report. Universidad de La Habana, Cuba.Google Scholar
  26. Guo SM, Huang CH (2013) Dietary zinc requirements of soft-shelled turtle, Pelodiscus sinensis, fed diet with soybean meal as the major protein source. J Fish Soc Taiwan 40(2):117–124Google Scholar
  27. Hernández-Hurtado PS, Nolasco-Soria H, Carrillo-Farnés O, Hernández-Hurtado H, de Quevedo-Machain RG, Casas-Andreu G et al (2018) Contributions to the nutrition of the American crocodile Crocodylus acutus (Cuvier, 1807) in captivity. Lat Am J Aquat Res 46(1):15–19CrossRefGoogle Scholar
  28. Hoffman LC (2008) The yield and nutritional value of meat from African ungulates, camelidae, rodents, ratites and reptiles. Meat Sci 80(1):94–100CrossRefGoogle Scholar
  29. Hoffman LC, Cawthorn D (2013) Exotic protein sources to meet all needs. Meat Sci 95(4):764–771CrossRefGoogle Scholar
  30. Hoffman LC, Fisher PP, Sales J (2000) Carcass and meat characteristics of the Nile crocodile (Crocodylus niloticus). J Sci Food Agric 80(3):390–396CrossRefGoogle Scholar
  31. Huang CH, Lin WY (1999) Effects of substituting fermented soybean meal for fish meal in diets on growth and body composition of soft-shelled turtle, Trionyx Sinensis. J Fish Soc Taiwan 4:225–232Google Scholar
  32. Huang CH, Lin WY (2002) Estimation of optimal dietary methionine requirement for softshell turtle, Pelodiscus sinensis. Aquaculture 207(3–4):281–287CrossRefGoogle Scholar
  33. Huang CH, Lin WY (2004) Effects of dietary vitamin E level on growth and tissue lipid peroxidation of soft-shelled turtle, Pelodiscus sinensis (Wiegmann). Aquac Res 35(10):948–954CrossRefGoogle Scholar
  34. Huang CH, Lin WY, Chu JH (2005) Dietary lipid level influences fatty acid profiles, tissue composition, and lipid peroxidation of soft-shelled turtle, Pelodiscus sinensis. Comp Biochem Physiol A Mol Integr Physiol 142(3):383–388CrossRefGoogle Scholar
  35. Khan B, Tansel B (2000) Mercury bioconcentration factors in American alligators (Alligator mississippiensis) in the Florida Everglades. Ecotoxicol Environ Saf 47(1):54–58CrossRefGoogle Scholar
  36. Klein G, Andreoletti O, Budka H, Buncic S, Colin P, Collins JD et al (2007) Public health risks involved in the human consumption of reptile meat scientific opinion of the panel on biological hazards. EFSA J 578:1–55Google Scholar
  37. Klemens MW, Thorbjarnarson JB (1995) Reptiles as a food resource. Biodivers Conserv 4(3):281–298CrossRefGoogle Scholar
  38. Lee SML, Wong WP, Hiong KC, Loong AM, Chew SF, Ip YK (2006) Nitrogen metabolism and excretion in the aquatic Chinese soft-shell turtle, Pelodiscus sinensis, exposed to a progressive increase in ambient salinity. J Exp Zool 305A:995–1009CrossRefGoogle Scholar
  39. Madsen M, Milne JAC, Chambers P (1992) Critical control points in the slaughter and dressing of farmed crocodiles. J Food Sci Technol 29:265–267Google Scholar
  40. Magnino S, Colin P, Dei-Cas E, Madsen M, McLauchlin J, Nöckler K et al (2009) Biological risks associated with consumption of reptile products. Int J Food Microbiol 134(3):163–175CrossRefGoogle Scholar
  41. Mancini A, Koch V (2009) Sea turtle consumption and black market trade in Baja California Sur, Mexico. Endanger Species Res 7:1–10CrossRefGoogle Scholar
  42. Mbete RA, Banga-Mboko H, Racey P, Mfoukou-Ntsakala A, Nganga I, Vermeulen C et al (2011) Household bushmeat consumption in Brazzaville, the Republic of the Congo. Trop Conserv Sci 4:187–202CrossRefGoogle Scholar
  43. Mohneke M, Onadeko AB, Rödel MO (2009) Exploitation of frogs–a review with a focus on West Africa. Salamandra 45(4):193–202Google Scholar
  44. Muhammad NO, Ajiboye B (2010) Nutrient composition of Rana galamensis. Afr J Food Sci Technol 1(1):27–30Google Scholar
  45. Natusch DJD, Lyons JA (2014) Assessment of python breeding farms supplying the international high-end leather industry. A report under the ‘Python Conservation Partnership’ programme of research. Occasional Paper of the IUCN Species Survival Commission No. 50. Gland, Switzerland: IUCNGoogle Scholar
  46. Neto JV, Bressan MC, Rodrigues EC, Kloster MA, Santana MTA (2007) Avaliação físico química da carne de jacaré-do-pantanal (Caiman yacare Daudin 1802) de idades diferentes. Ciência e Agrotecnologia 31(5):1430–1434CrossRefGoogle Scholar
  47. Neveu A (2004) La raniculture estelle une alternative à la récolte? État actuel en France. INRA Prod Anim 17(3):167–175Google Scholar
  48. Neveu A (2009) Suitability of European green frogs for intensive culture: comparison between different phenotypes of the esculenta hybridogenetic complex. Aquaculture 295:30–37CrossRefGoogle Scholar
  49. Nobrega IC, Ataíde CS, Moura OM, Livera AV, Menezes PH (2007) Volatile constituents of cooked bullfrog (Rana catesbeiana) legs. Food Chem 102(1):186–191CrossRefGoogle Scholar
  50. NRC (National Research Council) (1991) Micro-livestock: little-known small animals with a promising economic future. National Academy Press, Washington, DCGoogle Scholar
  51. Nuangsaeng BA, Boonyaratapalin M (2001) Protein requirement of juvenile soft-shelled turtle Trionyx sinensis Wiegmann. Aquac Res 32:106–111CrossRefGoogle Scholar
  52. Ockerman HW, Basu L (2009) Undomesticated food animals hunted and used for food. In: Agricultural Sciences – Vol. I – Undomesticated food animals hunted and used for food. Edited by Rattan Lal. Eolss Publishers Co. Oxford, UK. pp: 232–249Google Scholar
  53. Oduntan OO, Soaga JA, Jenyo-Oni A (2012) Comparison of edible frog (Rana esculenta) and other bush meat types: proximate composition, social status and acceptability. J Environ Res Manag 3(7):124–128Google Scholar
  54. Ogungbenle HN, Adaraniwon PT (2013) Chemical and functional properties of roasted spitting cobra (N. nigricollis). Bangladesh J Sci Ind Res 48(3):197–200CrossRefGoogle Scholar
  55. Ojewola GS, Udom SF (2005) Chemical evaluation of the nutrient composition of some unconventional animal protein sources. Int J Poult Sci 4(10):745–747CrossRefGoogle Scholar
  56. Olvera-Novoa MA, Ontiveros-Escutia VM, Flores-Nava A (2007) Optimum protein level for growth in juvenile bullfrog (Rana catesbeiana Shaw, 1802). Aquaculture 266(1–4):191–199CrossRefGoogle Scholar
  57. Onadeko AB, Egonmwan RI, Saliu JK (2011) Edible amphibian species: local knowledge of their consumption in southwest Nigeria and their nutritional value. West Afr J App Ecol 19(1):67–76Google Scholar
  58. Osthoff G, Hugo A, Bouwman H, Buss P, Govender D, Joubert CC, Swarts JC (2010) Comparison of the lipid properties of captive, healthy wild, and pansteatitis-affected wild Nile crocodiles (Crocodylus niloticus). Comp Biochem Physiol A Mol Integr Physiol 155(1):64–69CrossRefGoogle Scholar
  59. Özogul F, Özogul Y, Olgunoglu AI, Boga EK (2008) Comparison of fatty acid, mineral and proximate composition of body and legs of edible frog (Rana esculenta). Int J Food Sci Nutr 59(7–8):558–565CrossRefGoogle Scholar
  60. Özyurt G, Etyemez M (2015) Changes of fatty acid composition in frog legs (Rana esculenta) during cold storage period: irradiation effect. J Aquat Food Prod Technol 24(5):481–489CrossRefGoogle Scholar
  61. Panella F, Cossu ME, Vieites CM, Gonzalez OM (2003) Carne de lagarto overo (Tupinambis merianae) y yacaré (Caiman yacare y latirostris). Calidad comparativa. Rev Arg Prod Anim 23(1):355–356Google Scholar
  62. Peplow A, Balaban M, Leak F (1990) Lipid composition of fat trimmings from farm-raised alligator. Aquaculture 91(3–4):339–348CrossRefGoogle Scholar
  63. Rodrigues EC, Bressan MC, Neto JV, Oliveira J, Faria PB, Ferrão SPB, Andrade PL (2007) Quality and chemistry composition of comercial cuts of alligator swanpland meat (Cayman yacare). Ciência e Agrotecnologia 31(2):448–455CrossRefGoogle Scholar
  64. Romanelli PF, Caseri R, Lopes Filho JF (2002) Processamento da Carne do Jacaré do Pantanal (Caiman crocodilus yacare). Food Sci Technol (Campinas) 22(1):70–75CrossRefGoogle Scholar
  65. Saadoun A, Cabrera MC (2008) A review of the nutritional content and technological parameters of indigenous sources of meat in South America. Meat Sci 80(3):570–581CrossRefGoogle Scholar
  66. Shearer KD, Åsgård T, Andorsdöttir G, Aas GH (1994) Whole body elemental and proximate composition of Atlantic salmon (Salmo salar) during the life cycle. J Fish Biol 44(5):785–797CrossRefGoogle Scholar
  67. Shine R (1986) Predation upon filesnakes (Acrochordus arafurae) by aboriginal hunters: selectivity with respect to size, sex and reproductive condition. Copeia 1886:238–239CrossRefGoogle Scholar
  68. Suyama M, Hirano T, Sato K, Fukuda H (1979) Nitrogenous constituents of meat extract of fresh-water softshell turtle. Bull Jpn Soc Sci Fish 45(5):595–599CrossRefGoogle Scholar
  69. Tokur B, Gürbüz RD, Özyurt G (2008) Nutritional composition of frog (Rana esculanta) waste meal. Bioresour Technol 99:1332–1338CrossRefGoogle Scholar
  70. Uhart M, Milano F (2002) Multiple species production systems. Reversing underdevelopment and nonsustainability in Latin America. Ann N Y Acad Sci 969:20–23CrossRefGoogle Scholar
  71. United Nations Department of Economics and Social Affairs (2017) Population Division. World population prospects: The 2017 revision. https://esa.un.org/unpd/wpp/Graphs/DemographicProfiles/ (Consulted on 15 of September 2018)
  72. Vega Parry H, Alonso T, Caldironi H, Manes ME (2013) Composition of neutral lipids and phospholipids in tegu lizard Tupinambis merianae fat bodies. Revista Argentina de Producción Animal 33(2):129–137Google Scholar
  73. Villamizar VM (2007) Análisis bromatológico de la carne de la iguana verde (Iguana iguana) de los sectores de Minca, Bonda y Mamatoco (Santa Marta DTCH) y Fonseca (La Guajira). Duazary: Revista Internacional de Ciencias de la Salud 4(1):30–37Google Scholar
  74. Wang CC, Huang CH (2015) Effects of dietary vitamin C on growth, lipid oxidation, and carapace strength of soft-shelled turtle, Pelodiscus sinensis. Aquaculture 445(1–4):1–4CrossRefGoogle Scholar
  75. Wang J, Qi Z, Yang Z (2014) Evaluation of the protein requirement of juvenile Chinese soft-shelled turtle (Pelodiscus sinensis, Wiegmann) fed with practical diets. Aquaculture 433:252–255CrossRefGoogle Scholar
  76. WHO (2007) WHO technical report series 935: protein and amino acid requirements in human nutrition: report of a joint- WHO/FAO/UNU expert consultation. World Health Organization. WHO Press, Geneva, p 150Google Scholar
  77. Wu GS, Huang CH (2008) Estimation of dietary copper requirement of juvenile soft-shelled turtles, Pelodiscus sinensis. Aquaculture 280(1–4):206–210CrossRefGoogle Scholar
  78. Yang A, Cheng F, Tong P, Chen H (2017) Effect of tea polyphenol and nisin on the quality of tortoise (Trachemys scripta elegans) meat during chilled storage. J Food Process Preserv 41(6):e13308CrossRefGoogle Scholar
  79. Zhou F, Ding XY, Feng H, Xu YB, Xue HL, Zhang JR, Ng WK (2013) The dietary protein requirement of a new Japanese strain of juvenile Chinese soft shell turtle, Pelodiscus sinensis. Aquaculture 412:74–80CrossRefGoogle Scholar
  80. Zhou XX, Wang L, Feng H, Guo QL, Dai HP (2011) Acute phase response in Chinese soft-shell turtle (Trionyx sinensis) with Aeromonas hydrophila infection. Dev Comp Immunol 35:441–451CrossRefGoogle Scholar
  81. Zou Y, Ai Q, Mai K, Zhang W, Zhang Y, Xu W (2012) Effects of brown fish meal replacement with fermented soybean meal on growth performance, feed efficiency and enzyme activities of Chinese soft-shelled turtle, Pelodiscus sinensis. J Ocean Univ China 11(2):227–235CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rubén Domínguez
    • 1
    Email author
  • Mirian Pateiro
    • 1
  • Paulo E. S. Munekata
    • 1
  • Mohammed Gagaoua
    • 2
  • Francisco J. Barba
    • 3
  • José Manuel Lorenzo
    • 1
  1. 1.Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de GaliciaOurenseSpain
  2. 2.INRA, UMR HerbivoresSaint-Genès-ChampanelleFrance
  3. 3.Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of PharmacyUniversitat de ValènciaValènciaSpain

Personalised recommendations