Gene Selection for Microarray Data Classification Using Hybrid Meta-Heuristics

  • Nassima DifEmail author
  • Mohamed walid Attaoui
  • Zakaria Elberrichi
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 64)


The hybridization of metaheuristics got a lot of interest lately. The crucial step lies in the choice of the hybrid methods. The major purpose is to make a tradeoff between exploitation and exploration concepts to create a more robust method. Hybrid metaheuristics are used as a solution to many optimization problems such as feature selection. In this paper we propose an hybridization between metaheuristics (PeSOA, FA, DE, AIS, BAT) for a best gene selection in microarray datasets. The main objective is to prove the efficiency of the proposed hybridization compared to the hybrid methods. The experimentations showed that PeSOA-C and HFA were competitive to their hybrid methods, on the other side, AIS-BAT was less promising compared to AIS. As results, we obtained a perfect 100% in case of Leukemia, Ovarian Cancer, Lymphoma and MLL-Leukemia datasets by the HFA hybridization with only 2%–4% of selected genes.


Gene selection Feature selection Metaheuristics Hybridization Microarray dataset Classification Data mining PeSOA FA DE AIS BAT 


  1. 1.
    Harrington, C.A., Rosenow, C., Retief, J.: Monitoring gene expression using DNA microarrays. Curr. Opin. Microbiol. 3(3), 285–291 (2000)CrossRefGoogle Scholar
  2. 2.
    van Hal, N.L., Vorst, O., van Houwelingen, A.M., Kok, E.J., Peijnenburg, A., Aharoni, A.,., Keijer, J., : The application of DNA microarrays in gene expression analysis. J. Biotechnol. 78(3), 271–280 (2000)Google Scholar
  3. 3.
    Michiels, S., Koscielny, S., Hill, C.: Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 365(9458), 488–492 (2005)CrossRefGoogle Scholar
  4. 4.
    Cho, S.B., Won, H.H.: Machine learning in DNA microarray analysis for cancer classification. In: Proceedings of the First Asia-Pacific Bioinformatics Conference on Bioinformatics, vol. 19, pp. 189–198. Australian Computer Society, Inc. (2003)Google Scholar
  5. 5.
    Mao, Z., Cai, W., Shao, X.: Selecting significant genes by randomization test for cancer classification using gene expression data. J. Biomed. Inform. 46(4), 594–601 (2013)CrossRefGoogle Scholar
  6. 6.
    Zhang, H., Li, L., Luo, C., Sun, C., Chen, Y., Dai, Z., Yuan, Z.: Informative gene selection and direct classification of tumor based on chi-square test of pairwise gene interactions. BioMed Res. Int. (2014)Google Scholar
  7. 7.
    Sharbaf, F.V., Mosafer, S., Moattar, M.H.: A hybrid gene selection approach for microarray data classification using cellular learning automata and ant colony optimization. Genomics 107(6), 231–238 (2016)CrossRefGoogle Scholar
  8. 8.
    Alba, E., Garcia-Nieto, J., Jourdan, L., Talbi, E.G.: Gene selection in cancer classification using PSO/SVM and GA/SVM hybrid algorithms. In: IEEE Congress on 2007 Evolutionary Computation, CEC 2007, pp. 284–290. IEEE (2007)Google Scholar
  9. 9.
    Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)CrossRefGoogle Scholar
  10. 10.
    Maldonado, S., Weber, R.: A wrapper method for feature selection using support vector machines. Inf. Sci. 179(13), 2208–2217 (2009)CrossRefGoogle Scholar
  11. 11.
    Apolloni, J., Leguizamn, G., Alba, E.: Two hybrid wrapper-filter feature selection algorithms applied to high-dimensional microarray experiments. Appl. Soft Comput. 38, 922–932 (2016)CrossRefGoogle Scholar
  12. 12.
    Anaissi, A., Kennedy, P.J., Goyal, M.: Feature selection of imbalanced gene expression microarray data. In: 2011 12th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/distributed Computing (snpd), pp. 73–78. IEEE (2011)Google Scholar
  13. 13.
    Siedlecki, W., Sklansky, J.: On automatic feature selection. In: Handbook of Pattern Recognition and Computer Vision, pp. 63–87 (1993)CrossRefGoogle Scholar
  14. 14.
    Liu, H., Setiono, R.: A probabilistic approach to feature selection-a filter solution. In: ICML, vol. 96, pp. 319–327 (1996)Google Scholar
  15. 15.
    Zhong, N., Dong, J., Ohsuga, S.: Using rough sets with heuristics for feature selection. J. Intell. Inf. Syst. 16(3), 199–214 (2001)CrossRefGoogle Scholar
  16. 16.
    Li, Y., Wang, G., Chen, H., Shi, L., Qin, L.: An ant colony optimization based dimension reduction method for high-dimensional datasets. J. Bionic Eng. 10(2), 231–241 (2013)CrossRefGoogle Scholar
  17. 17.
    Jona, J.B., Nagaveni, N.: Ant-cuckoo colony optimization for feature selection in digital mammogram. Pak. J. Biol. Sci. 17(2), 266 (2014)CrossRefGoogle Scholar
  18. 18.
    Prasad, Y., Biswas, K.K (eds.): In: AAAI, pp. 4288–4289 (2015)Google Scholar
  19. 19.
    Glover, F.: Future paths for integer programming and links to artificial intelligence. Computers operations research 13(5), 533–549 (1986)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Dif, N., Elberrichi, Z.: Microarray data feature selection and classification using an enhanced multi-verse optimizer and support vector machine (2017)Google Scholar
  21. 21.
    Yang, K., Cai, Z., Li, J., Lin, G.: A stable gene selection in microarray data analysis. BMC Bioinform. 7(1), 228 (2006)CrossRefGoogle Scholar
  22. 22.
    Das, K., Mishra, D., Shaw, K.: A metaheuristic optimization framework for informative gene selection. Inform. Med. Unlocked 4, 10–20 (2016)CrossRefGoogle Scholar
  23. 23.
    Alshamlan, H.M., Badr, G.H., Alohali, Y.A.: Genetic Bee Colony (GBC) algorithm: a new gene selection method for microarray cancer classification. Comput. Biol. Chem. 56, 49–60 (2015)CrossRefGoogle Scholar
  24. 24.
    Zhu, Z., Ong, Y.S., Dash, M.: Markov blanket-embedded genetic algorithm for gene selection. Pattern Recognit. 40(11), 3236–3248 (2007)CrossRefGoogle Scholar
  25. 25.
    Deepthi, P.S., Thampi, S.M.: A metaheuristic approach for simultaneous gene selection and clustering of microarray data. Intell. Syst. Technol. Appl., pp. 449–461. Springer, Cham (2016)Google Scholar
  26. 26.
    Talbi, E.G., Jourdan, L., Garcia-Nieto, J., Alba, E.: Comparison of population based metaheuristics for feature selection: application to microarray data classification. In: 2008 IEEE/ACS International Conference on Computer Systems and Applications, AICCSA 2008, pp. 45–52. IEEE (2008)Google Scholar
  27. 27.
    Chen, K.H., Wang, K.J., Tsai, M.L., Wang, K.M., Adrian, A.M., Cheng, W.C., Chang, K.S.: Gene selection for cancer identification: a decision tree model empowered by particle swarm optimization algorithm. BMC Bioinform. 15(1), 49 (2014)CrossRefGoogle Scholar
  28. 28.
    Dashtban, M., Balafar, M.: Gene selection for microarray cancer classification using a new evolutionary method employing artificial intelligence concepts. Genomics 109(2), 91–107 (2017)CrossRefGoogle Scholar
  29. 29.
    Lv, J., Peng, Q., Chen, X., Sun, Z.: A multi-objective heuristic algorithm for gene expression microarray data classification. Expert. Syst. Appl. 59, 13–19 (2016)CrossRefGoogle Scholar
  30. 30.
    Boucheham, A., Batouche, M., Meshoul, S.: An ensemble of cooperative parallel metaheuristics for gene selection in cancer classification. In: International Conference on Bioinformatics and Biomedical Engineering, pp. 301–312. Springer, Cham (2015)Google Scholar
  31. 31.
    Storn, R., Price, K.: Differential evolutiona simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)CrossRefGoogle Scholar
  32. 32.
    Do, D.T., Lee, S., Lee, J.: A modified differential evolution algorithm for tensegrity structures. Compos. Struct. 158, 11–19 (2016)CrossRefGoogle Scholar
  33. 33.
    Khushaba, R.N., Al-Ani, A., Al-Jumaily, A.: Differential evolution based feature subset selection. In: 2008 19th International Conference on Pattern Recognition. ICPR 2008, pp. 1–4. IEEE (2008)Google Scholar
  34. 34.
    Sikdar, U.K., Ekbal, A., Saha, S.: Differential evolution based feature selection and classifier ensemble for named entity recognition. Proc. COLING 2012, 2475–2490 (2012)Google Scholar
  35. 35.
    Chattopadhyay, S., Mishra, S., Goswami, S.: Feature selection using differential evolution with binary mutation scheme, pp. 1–6. IEEE (2016)Google Scholar
  36. 36.
    Shojaie, S., Moradi, M.H.: An evolutionary artificial immune system for feature selection and parameters optimization of support vector machines for ERP assessment in a P300-based GKT. In: 2008 Biomedical Engineering Conference, CIBEC 2008, Cairo International, pp. 1–5. IEEE (2008)Google Scholar
  37. 37.
    Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2010)Google Scholar
  38. 38.
    Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp. 65–74. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  39. 39.
    Mishra, S., Shaw, K., Mishra, D.: A new meta-heuristic bat inspired classification approach for microarray data. Procedia Technol. 4, 802–806 (2012)CrossRefGoogle Scholar
  40. 40.
    Gheraibia, Y., Moussaoui, A.: Penguins search optimization algorithm (PeSOA). In: International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, pp. 222–231. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  41. 41.
    Mzili, I., Riffi, M.E.: Discrete penguins search optimization algorithm to solve the traveling salesman problem. J. Theor. Appl. Inf. Technol. 72(3) (2015)Google Scholar
  42. 42.
    Gheraibia, Y., Moussaoui, A., Djenouri, Y., Kabir, S., Yin, P.Y.: Penguins search optimisation algorithm for association rules mining. J. Comput. Inf. Technol. 24(2), 165–179 (2016)CrossRefGoogle Scholar
  43. 43.
    Bidi, N., Elberrichi, Z.: Using Penguins search optimization algorithm for best features selection for biomedical data classification. Int. J. Organ. Collect. Intell. (IJOCI) 7(4), 51–62 (2017)CrossRefGoogle Scholar
  44. 44.
    Zhang, L., Liu, L., Yang, X.S., Dai, Y.: A novel hybrid firefly algorithm for global optimization. PloS One 11(9), e0163230 (2016)CrossRefGoogle Scholar
  45. 45.
    Mazen, F., Abul Seoud, R.A., Gody, A.M.: Genetic algorithm and firefly algorithm in a hybrid approach for breast cancer diagnosis. Int. J. Comput. Trends Technol. (IJCTT) 32, (2) (2016)Google Scholar
  46. 46.
    Fister Jr, I., Fister, D., Yang, X.S.: A hybrid bat algorithm (2013). arXiv preprint arXiv:1303.6310
  47. 47.
    Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. 96(12), 6745–6750 (1999)CrossRefGoogle Scholar
  48. 48.
    Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Bloomfield, C.D.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439), 531–537 (1999)CrossRefGoogle Scholar
  49. 49.
    Van’t Veer, L.J., et al.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871), 530 (2002)CrossRefGoogle Scholar
  50. 50.
    Bhattacharjee, A., Richards, W.G., Staunton, J., Li, C., Monti, S., Vasa, P., Loda, M.: Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl. Acad. Sci. 98(24), 13790–13795 (2001)CrossRefGoogle Scholar
  51. 51.
    Petricoin III, E.F., Ardekani, A.M., Hitt, B.A., Levine, P.J., Fusaro, V.A., Steinberg, S.M., Liotta, L.A.: Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359(9306), 572–577 (2002)CrossRefGoogle Scholar
  52. 52.
    Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., Powell, J. I.: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403(6769), 503 (2000)CrossRefGoogle Scholar
  53. 53.
    Armstrong, S.A., Staunton, J.E., Silverman, L.B., Pieters, R., den Boer, M.L., Minden, M.D., Korsmeyer, S. J.: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat. Genet. 30(1), 41 (2002)CrossRefGoogle Scholar
  54. 54.
    Khan, J., Wei, J.S., Ringner, M., Saal, L.H., Ladanyi, M., Westermann, F., Meltzer, P. S.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat. Med. 7(6), 673 (2001)CrossRefGoogle Scholar
  55. 55.
    Aziz, R., Verma, C.K., Srivastava, N.: A fuzzy based feature selection from independent component subspace for machine learning classification of microarray data. Genomics Data 8, 4–15 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nassima Dif
    • 1
    Email author
  • Mohamed walid Attaoui
    • 1
  • Zakaria Elberrichi
    • 1
  1. 1.EEDIS LaboratoryDjillali Liabes UniversitySidi Bel AbbesAlgeria

Personalised recommendations