Advertisement

A Chaotic Binary Salp Swarm Algorithm for Solving the Graph Coloring Problem

  • Yassine MeraihiEmail author
  • Amar Ramdane-Cherif
  • Mohammed Mahseur
  • Dalila Achelia
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 64)

Abstract

This paper proposes a new Chaotic Binary Salp Swarm Algorithm (CBSSA) to solve the graph coloring problem. First, the Binary Salp Swarm Algorithm (BSSA) is obtained from the original Salp Swarm Algorithm (SSA) using the S-Shaped transfer function (Sigmoid function) and the binarization method. Second, the most popular chaotic map, namely logistic map, is used to replace the random variables used in the mathematical model of SSA. The aim of using chaotic map is to avoid the stagnation to local optima and enhance the exploration and exploitation capabilities. We use the well-known DIMACS benchmark to evaluate the performance of our proposed algorithm. The simulation results show that our proposed algorithm outperforms other well-known algorithms in the literature.

Keywords

Graph coloring problem Salp Swarm algorithm Binary Salp swarm algorithm Chaotic maps Combinatorial optimization problem 

References

  1. 1.
    de Werra, D.: An introduction to timetabling. Eur. J. Oper. Res. 19(2), 151–162 (1985)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Lotfi, V., Sarin, S.: A graph coloring algorithm for large scale scheduling problems. Comput. Oper. Res. 13(1), 27–32 (1986)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Dowsland, K.A., Thompson, J.M.: Ant colony optimization for the examination scheduling problem. J. Oper. Res. Soc. 56(4), 426–438 (2005)CrossRefGoogle Scholar
  4. 4.
    Chaitin, G.J., Auslander, M.A., Chandra, A.K., Cocke, J., Hopkins, M.E., Markstein, P.W.: Register allocation via coloring. Comput. Lang. 6(1), 47–57 (1981)CrossRefGoogle Scholar
  5. 5.
    de Werra, D., Eisenbeis, C., Lelait, S., Marmol, B.: On a graph-theoretical model for cyclic register allocation. Discret. Appl. Math. 93(2–3), 191–203 (1999)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gamst, A.: Some lower bounds for a class of frequency assignment problems. IEEE Trans. Veh. Technol. 35(1), 8–14 (1986)CrossRefGoogle Scholar
  7. 7.
    Smith, D.H., Hurley, S., Thiel, S.U.: Improving heuristics for the frequency assignment problem. Eur. J. Oper. Res. 107(1), 76–86 (1998)CrossRefGoogle Scholar
  8. 8.
    Woo, T.K., Su, S.Y., Newman-Wolfe, R.: Resource allocation in a dynamically partitionable bus network using a graph coloring algorithm. IEEE Trans. Commun. 39(12), 1794–1801 (1991)CrossRefGoogle Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of npcompleteness (series of books in the mathematical sciences). Comput. Intractability 340 (1979)Google Scholar
  10. 10.
    Leighton, F.T.: A graph coloring algorithm for large scheduling problems. J. Res. Natl. Bur. Stand. 84(6), 489–506 (1979)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Brlaz, D.: New methods to color the vertices of a graph. Commun. ACM 22(4), 251–256 (1979)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Computing 39(4), 345–351 (1987)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Abbasian, R., Mouhoub, M.: A hierarchical parallel genetic approach for the graph coloring problem. Appl. Intell. 39(3), 510–528 (2013)CrossRefGoogle Scholar
  14. 14.
    Djelloul, H., Layeb, A., Chikhi, S.: A binary cuckoo search algorithm for graph coloring problem. Int. J. Appl. Evol. Comput. (IJAEC) 5(3), 42–56 (2014)CrossRefGoogle Scholar
  15. 15.
    Mahmoudi, S., Lotfi, S.: Modified cuckoo optimization algorithm (MCOA) to solve graph coloring problem. Appl. Soft Comput. 33, 48–64 (2015)CrossRefGoogle Scholar
  16. 16.
    Faraji, M., Javadi, H.H.S.: Proposing a new algorithm based on bees behavior for solving graph coloring. Int. J. Contemp. Math. Sci. 6(1), 41–49 (2011)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Djelloul, H., Sabba, S., Chikhi, S.: Binary bat algorithm for graph coloring problem. In: 2014 Second World Conference on Complex Systems (WCCS), pp. 481–486. IEEE (2014)Google Scholar
  18. 18.
    Lü Z., Hao, J.K.: A memetic algorithm for graph coloring. Eur. J. Oper. Res. 203(1), 241–250 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Mabrouk, B.B., Hasni, H., Mahjoub, Z.: On a parallel genetictabu search based algorithm for solving the graph colouring problem. Eur. J. Oper. Res. 197(3), 1192–1201 (2009)CrossRefGoogle Scholar
  20. 20.
    Douiri, S.M., Elbernoussi, S.: Solving the graph coloring problem via hybrid genetic algorithms. J. King Saud Univ. Eng. Sci. 27(1), 114–118 (2015)Google Scholar
  21. 21.
    Fidanova, S., Pop, P.: An improved hybrid ant-local search algorithm for the partition graph coloring problem. J. Comput. Appl. Math. 293, 55–61 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Faris, H., Mafarja, M.M., Heidari, A.A., Aljarah, I., AlaM, A.Z., Mirjalili, S., Fujita, H.: An efficient binary Salp Swarm algorithm with crossover scheme for feature selection problems. Knowl. Based Syst. 154, 43–67 (2018)CrossRefGoogle Scholar
  23. 23.
    Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp Swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)CrossRefGoogle Scholar
  24. 24.
    Sayed, G.I., Khoriba, G., Haggag, M.H.: A novel chaotic Salp Swarm algorithm for global optimization and feature selection. Appl. Intell. 1–20 (2018)Google Scholar
  25. 25.
    El-Fergany, A.A.: Extracting optimal parameters of PEM fuel cells using Salp Swarm optimizer. Renew. Energy 119, 641–648 (2018)CrossRefGoogle Scholar
  26. 26.
    Abusnaina, A.A., Ahmad, S., Jarrar, R., Mafarja, M.: Training neural networks using Salp Swarm algorithm for pattern classification, p. 17. ACM (2018)Google Scholar
  27. 27.
    Rizk-Allah, R.M., Hassanien, A.E., Elhoseny, M., Gunasekaran, M.: A new binary Salp Swarm algorithm: development and application for optimization tasks. Neural Comput. Appl. 1–23 (2018)Google Scholar
  28. 28.
    Ibrahim, A., Ahmed, A., Hussein, S., Hassanien, A.E.: Fish image segmentation using Salp Swarm algorithm, pp. 42–51. Springer, Cham (2018)CrossRefGoogle Scholar
  29. 29.
    Mirjalili, S., Mirjalili, S.M., Yang, X.S.: Binary bat algorithm. Neural Comput. Appl. 25(3–4), 663–681 (2014)CrossRefGoogle Scholar
  30. 30.
    Mirjalili, S., Lewis, A.: S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm Evol. Comput. 9, 1–14 (2013)CrossRefGoogle Scholar
  31. 31.
    Lei, X., Du, M., Xu, J., Tan, Y.: Chaotic fruit fly optimization algorithm. In: International Conference in Swarm Intelligence, pp. 74–85. Springer, Cham (2014)Google Scholar
  32. 32.
    Kanso, A., Smaoui, N.: Logistic chaotic maps for binary numbers generations. Chaos Solitons Fractals 40(5), 2557–2568 (2009)CrossRefGoogle Scholar
  33. 33.
    Tamiru, A.L., Hashim, F.M.: Application of bat algorithm and fuzzy systems to model exergy changes in a gas turbine. In: Artificial Intelligence Evolutionary Computing and Metaheuristics, pp. 685–719. Springer, Heidelberg (2013)Google Scholar
  34. 34.
    Heidari, A.A., Abbaspour, R.A., Jordehi, A.R.: An efficient chaotic water cycle algorithm for optimization tasks. Neural Comput. Appl. 28(1), 57–85 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yassine Meraihi
    • 1
    Email author
  • Amar Ramdane-Cherif
    • 2
  • Mohammed Mahseur
    • 3
  • Dalila Achelia
    • 1
  1. 1.Automation DepartmentUniversity of M’Hamed Bougara BoumerdesBoumerdesAlgeria
  2. 2.LISV LaboratoryUniversity of Versailles St-Quentin-en-YvelinesVelizyFrance
  3. 3.Faculty of Electronics and InformaticsUniversity of Sciences and Technology Houari BoumedieneAlgiersAlgeria

Personalised recommendations