Advertisement

An Improved Fuzzy Analytical Hierarchy Process for K-Representative Skyline Web Services Selection

  • Abdelaziz OuadahEmail author
  • Allel Hadjali
  • Fahima Nader
  • Karim Benouaret
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 64)

Abstract

Nowadays, the processes of selecting web services which give the same functionality with different quality of service (QoS) become an important issue. To deal with the large number of Web services candidates, K-representative Skyline is appeared as a Skyline variant to find the short list of the most relevant Web services that represent a summary about the full skyline result. However, it returns generally a conflicting result. The AHP (Analytical Hierarchic Processes) method and its variants as Fuzzy AHP are widely used in ranking incomparable alternatives. However, it requires a huge number of inputs for users to fulfill a multiple comparison matrix, which make it difficult to use in practice notably in Web services selection field. In this work, we propose an improved Fuzzy AHP called IFAHP which allows to: i) elicit the QoS importance level using linguistic terms based on natural language, asking fewer efforts to users, ii) group the QoS attributes according to their importance level, iii) reduce the number of inputs and generate automatically all pair-wise matrix with respect to each attribute, using a discretization algorithm. The experimental evaluation conducted on real world dataset illustrates the feasibility and the effectiveness of our approach.

Keywords

Web services selection K-representative skyline Fuzzy AHP User preferences 

References

  1. 1.
    Alrifai, M., Skoutas, D., Risse, T.: Selecting Skyline services for QoS-based web service composition. In: Proceedings of the 19th International Conference one World Wide Web, pp. 11–20 (2010).  https://doi.org/10.1145/1772690.1772693
  2. 2.
    Shao, L., Zhang, J., Wei, Y., Zhao, J., Xie, B., Mei, H.: Personalized QoS prediction forweb services via collaborative filtering. In: ICWS, pp. 439–446 (2007).  https://doi.org/10.1109/icws.2007.140
  3. 3.
    Benouaret, K.: Advanced techniques for Web service query optimisation. Doctoral dissertation. Claude Bernard Lyon 1 university. Computer science laboratory in Picture and information Systems (2012)Google Scholar
  4. 4.
    Yu, Q., Bouguettaya, A.: Computing service skyline from uncertain qows. IEEE Trans. Serv. Comput. 3(1), 16–29 (2010).  https://doi.org/10.1109/tsc.2010.7CrossRefGoogle Scholar
  5. 5.
    Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting stars: the k most representative Skyline operator. In: IEEE 23rd International Conference on Data Engineering, ICDE 2007, pp. 86–95. IEEE, April 2007.  https://doi.org/10.1109/icde.2007.367854
  6. 6.
    Tao, Y., Ding, L., Lin, X., Pei, J.: Distance-based representative Skyline. In: IEEE 25th International Conference on Data Engineering, ICDE 2009, pp. 892–903. IEEE, March 2009.  https://doi.org/10.1109/icde.2009.84
  7. 7.
    Chen, G., Ma, X., Yang, D., Tang, S., Shuai, M., Xie, K.: Efficient approaches for summarizing subspace clusters into k representatives. Soft. Comput. 15(5), 845–853 (2011).  https://doi.org/10.1007/s00500-010-0552-8CrossRefGoogle Scholar
  8. 8.
    Inti, S., Tandon, V.: Application of fuzzy preference-analytic hierarchy process logic in evaluating sustainability of transportation infrastructure requiring multicriteria decision making. J. Infrastruct. Syst. 23(4), 04017014 (2017).  https://doi.org/10.1061/(ASCE)IS.1943-555X.0000373CrossRefGoogle Scholar
  9. 9.
    Wang, T.C., Chen, Y.H.: Applying fuzzy linguistic preference relations to the improvement of consistency of fuzzy AHP. Inf. Sci. 178(19), 3755–3765 (2008).  https://doi.org/10.1016/j.ins.2008.05.028MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kaya, T., Kahraman, C.: A fuzzy approach to e-banking website quality assessment based on an integrated AHP-ELECTRE method. Technol. Econ. Dev. Econ. 17(2), 313–334 (2011).  https://doi.org/10.3846/20294913.2011.583727CrossRefGoogle Scholar
  11. 11.
    Büyüközkan, G., Çifçi, G.: A combined fuzzy AHP and fuzzy TOPSIS based strategic analysis of electronic service quality in healthcare industry. Expert Syst. Appl. 39(3), 2341–2354 (2012).  https://doi.org/10.1016/j.eswa.2011.08.061CrossRefGoogle Scholar
  12. 12.
    Önüt, S., Kara, S.S., Efendigil, T.: A hybrid fuzzy MCDM approach to machine tool selection. J. Intell. Manuf. 19(4), 443–453 (2008).  https://doi.org/10.1007/s10845-008-0095-3CrossRefGoogle Scholar
  13. 13.
    Ouadah, A, Benouaret, K., Hadjali, A., Nader, F.: SkyAP-S3: a hybrid approach for efficient skyline services selection. In: Proceedings of the 8th IEEE International Conference on Service Oriented Computing & Applications (SOCA 2015), Rome, Italy, 19–21 Oct 2015.  https://doi.org/10.1109/soca.2015.22
  14. 14.
    Ouadah, A., Benouaret, K., Hadjali, A., Nader, F.: Combining skyline and multi-criteria decision methods to enhance web services selection. In: 12th International Symposium on Programming and Systems (ISPS 2015). IEEE, Algiers, Algeria, 28–30 Apr 2015.  https://doi.org/10.1109/isps.2015.7244975
  15. 15.
    Ouadah, A., Hadjali, A., Nader, F., et al.: SEFAP: an efficient approach for ranking skyline web services. J. Ambient Intell. Human. Comput. (2018).  https://doi.org/10.1007/s12652-018-0721-7
  16. 16.
    Borzsonyi, S., Kossmann, D., Stock, K.: The Skyline operator. In: ICDE (2001).  https://doi.org/10.1109/icde.2001.914855
  17. 17.
    Saaty, R.W.: The analytic hierarchy process-what it simple percentage and how it used simple percentage. Math. Models 9(3), 161–176 (1987)CrossRefGoogle Scholar
  18. 18.
    Chang, D.Y.: Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res. 95, 649–655 (1996).  https://doi.org/10.1016/0377-2217(95)00300-2CrossRefzbMATHGoogle Scholar
  19. 19.
    Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978).  https://doi.org/10.1016/s0165-0114(99)80004-9MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Buckley, J.J.: Fuzzy hierarchical analysis. Fuzzy Sets Syst. 17(3), 233–247 (1985).  https://doi.org/10.1016/0165-0114(85)90090-9MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kwong, C.K., Bai, H.: A fuzzy AHP approach to the determination of importance weights of customer requirements in quality function deployment. J. Intell. Manuf. 13(5), 367–377 (2002).  https://doi.org/10.1023/a:1019984626631CrossRefGoogle Scholar
  22. 22.
    Tang, Y.C.: An approach to budget allocation for an aerospace company – fuzzy analytic hierarchy process and artificial neural network. Neurocomputing 72, 3477–3489 (2009).  https://doi.org/10.1016/j.neucom.2009.03.020CrossRefGoogle Scholar
  23. 23.
    Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 31(8) (2010).  https://doi.org/10.1016/j.patrec.2009.09.011CrossRefGoogle Scholar
  24. 24.
    Garcia, S., Luengo, J., Sáez, J.A., Lopez, V., Herrera, F.: A survey of discretization techniques: taxonomy and empirical analysis in supervised learning. IEEE Trans. Knowl. Data Eng. 25(4), 734–750 (2013).  https://doi.org/10.1109/TKDE.2012.35CrossRefGoogle Scholar
  25. 25.
    Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of continuous features. In: Machine Learning: Proceedings of the Twelfth International Conference, vol. 12, pp. 194–202, July 1995Google Scholar
  26. 26.
    Al-Masri, E., Mahmoud, Q.H.: QoS-based discovery and ranking of web services. In: IEEE 16th International Conference one Computer Communications and Networks (ICCCN), pp. 529–534 (2007).  https://doi.org/10.1109/icccn.2007.4317873

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Abdelaziz Ouadah
    • 1
    Email author
  • Allel Hadjali
    • 2
  • Fahima Nader
    • 1
  • Karim Benouaret
    • 3
  1. 1.LMCS, Ecole Nationale Supérieure d’Informatique, Oued-SmarAlgerAlgérie
  2. 2.LIAS/ENSMAPoitierFrance
  3. 3.LIRISUniversité Claude Bernard Lyon 1VilleurbanneFrance

Personalised recommendations