A Context-Aware Distributed Protocol for Updating BDI Agents Abilities

  • Hichem Baitiche
  • Mourad Bouzenada
  • Djamel Eddine Saidouni
  • Youcef Berkane
  • Hichem Chama
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 64)


In this paper, we propose a context-aware distributed protocol, that improves agents awareness of their abilities. Based on the agent’s context, the protocol allows the exploration of agent’s neighborhood in order to detect the new available actions, and validate the existing ones. When a change in agent’s abilities is detected, the new available actions will be added to the agent’s set of available actions, and the invalid ones will be removed. The protocol is implemented in Jason, and tested in a smart laboratory scenario.


AmI systems MAS BDI agents Context awareness 


  1. 1.
    Ilié, J.-M., Chaouche, A.-C.: Toward an efficient ambient guidance for transport applications. Procedia Comput. Sci. 110, 190–198 (2017)CrossRefGoogle Scholar
  2. 2.
    Roda, C., Rodríguez, A.C., López-Jaquero, V., Navarro, E., González, P.: A multi-agent system for acquired brain injury rehabilitation in ambient intelligence environments. Neurocomputing 231, 11–18 (2017)CrossRefGoogle Scholar
  3. 3.
    Tapia, D.I., Abraham, A., Corchado, J.M., Alonso, R.S.: Agents and ambient intelligence: case studies. J. Ambient Intell. Humaniz. Comput. 1(2), 85–93 (2010)CrossRefGoogle Scholar
  4. 4.
    Bratman, M.: Intention, plans, and practical reason (1987)Google Scholar
  5. 5.
    Bordini, R.H., Hübner, J.F.: A java-based interpreter for an extended version of agentspeak. University of Durham, Universidade Regional de Blumenau (2007)Google Scholar
  6. 6.
    Busetta, P., Rönnquist, R., Hodgson, A., Lucas, A.: Jack intelligent agents-components for intelligent agents in java. AgentLink News Lett. 2(1), 2–5 (1999)Google Scholar
  7. 7.
    Meneguzzi, F., De Silva, L.: Planning in bdi agents: a survey of the integration of planning algorithms and agent reasoning. Knowl. Eng. Rev. 30(1), 1–44 (2015)CrossRefGoogle Scholar
  8. 8.
    Boukharrou, R., Chaouche, A.C., Ilié, J.-M., Saïdouni, D.E.: Contextual-Timed Planning Management for Ambient Systems, pp. 107–114. IEEE Computer Society (2014)Google Scholar
  9. 9.
    Rens, G., Moodley, D.: A hybrid pomdp-bdi agent architecture with online stochastic planning and plan caching. Cognitive Syst. Res. 43, 1–20 (2017)CrossRefGoogle Scholar
  10. 10.
    Sebastian, S., de Silva, L., Padgham, L.: Hierarchical planning in bdi agent programming languages: a formal approach. In: Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 1001–1008. ACM (2006)Google Scholar
  11. 11.
    Fikes, R.E., Nilsson, N.J.: Strips: a new approach to the application of theorem proving to problem solving. Artif. Intell. 2(3–4), 189–208 (1971)CrossRefGoogle Scholar
  12. 12.
    Nau, D., Cao, Y., Lotem, A., Munoz-Avila, H.: Shop: Simple Hierarchical Ordered Planner, vol. 2, pp. 968–973. Morgan Kaufmann Publishers Inc. (1999)Google Scholar
  13. 13.
    Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Systems in AgentSpeak using Jason. Wiley (2007)Google Scholar
  14. 14.
    Baitiche, H., Bouzenada, M.: and Djamel Eddine Saïdouni. Towards a generic predictive-based plan selection approach for bdi agents. Procedia Comput. Sci. 113, 41–48 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hichem Baitiche
    • 1
  • Mourad Bouzenada
    • 1
  • Djamel Eddine Saidouni
    • 1
  • Youcef Berkane
    • 1
  • Hichem Chama
    • 1
  1. 1.MISC LaboratoryUniversity of Abdelhamid Mehri Constantine 2ConstantineAlgeria

Personalised recommendations