Advertisement

Learning from Monte Carlo Rollouts with Opponent Models for Playing Tron

  • Stefan J. L. Knegt
  • Madalina M. Drugan
  • Marco A. WieringEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11352)

Abstract

This paper describes a novel reinforcement learning system for learning to play the game of Tron. The system combines Q-learning, multi-layer perceptrons, vision grids, opponent modelling, and Monte Carlo rollouts in a novel way. By learning an opponent model, Monte Carlo rollouts can be effectively applied to generate state trajectories for all possible actions from which improved action estimates can be computed. This allows to extend experience replay by making it possible to update the state-action values of all actions in a given game state simultaneously. The results show that the use of experience replay that updates the Q-values of all actions simultaneously strongly outperforms the conventional experience replay that only updates the Q-value of the performed action. The results also show that using short or long rollout horizons during training lead to similar good performances against two fixed opponents.

Keywords

Reinforcement learning Opponent modelling Games Monte Carlo rollouts Multi-layer perceptrons 

References

  1. 1.
    Baxter, J., Tridgell, A., Weaver, L.: Learning to play chess using temporal differences. Mach. Learn. 40(3), 243–263 (2000)CrossRefGoogle Scholar
  2. 2.
    Bom, L., Henken, R., Wiering, M.: Reinforcement learning to train Ms. Pac-Man using higher-order action-relative inputs. In: 2013 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), pp. 156–163 (2013)Google Scholar
  3. 3.
    de Bruin, T., Kober, J., Tuyls, K., Babuška, R.: The importance of experience replay database composition in deep reinforcement learning. In: Deep Reinforcement Learning Workshop, NIPS (2015)Google Scholar
  4. 4.
    Clevert, D., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). CoRR abs/1511.07289 (2015)Google Scholar
  5. 5.
    Ganzfried, S., Sandholm, T.: Game theory-based opponent modeling in large imperfect-information games. In: the 10th International Conference on Autonomous Agents and Multiagent Systems-Volume 2, pp. 533–540. International Foundation for Autonomous Agents and Multiagent Systems (2011)Google Scholar
  6. 6.
    He, H., Boyd-Graber, J.L., Kwok, K., Daumé III, H.: Opponent modeling in deep reinforcement learning. CoRR abs/1609.05559 (2016)Google Scholar
  7. 7.
    Knegt, S., Drugan, M., Wiering, M.: Opponent modelling in the game of Tron using reinforcement learning. In: 10th International Conference on Agents and Artificial Intelligence, ICAART 2018, pp. 29–40 (2018)Google Scholar
  8. 8.
    Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer, Heidelberg (2006).  https://doi.org/10.1007/11871842_29CrossRefGoogle Scholar
  9. 9.
    Lin, L.J.: Reinforcement Learning for Robots Using Neural Networks. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, January 1993Google Scholar
  10. 10.
    Mnih, V., et al.: Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)
  11. 11.
    van Otterlo, M., Wiering, M.: Reinforcement learning and Markov decision processes. In: Wiering, M., van Otterlo, M. (eds.) Reinforcement Learning: State-of-the-Art, pp. 3–42. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-27645-3_1CrossRefGoogle Scholar
  12. 12.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Parallel Distributed Processing, vol. 1, pp. 318–362. MIT Press (1986)Google Scholar
  13. 13.
    Samuel, A.L.: Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 3, 210–229 (1959)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)CrossRefGoogle Scholar
  15. 15.
    Shantia, A., Begue, E., Wiering, M.: Connectionist reinforcement learning for intelligent unit micro management in Starcraft. In: The 2011 International Joint Conference on Neural Networks (IJCNN), pp. 1794–1801. IEEE (2011)Google Scholar
  16. 16.
    Silver, D., et al.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)CrossRefGoogle Scholar
  17. 17.
    Silver, D., et al.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017)
  18. 18.
    Silver, D., et al.: Mastering the game of Go without human knowledge. Nature 550, 354 (2017)CrossRefGoogle Scholar
  19. 19.
    Southey, F., et al.: Bayes bluff: opponent modelling in poker. In: Proceedings of the 21st Annual Conference on Uncertainty in Artificial Intelligence (UAI), pp. 550–558 (2005)Google Scholar
  20. 20.
    Sutton, R.S.: Learning to predict by the methods of temporal differences. Mach. Learn. 3(1), 9–44 (1988)Google Scholar
  21. 21.
    Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, 1st edn. MIT Press, Cambridge (1998)Google Scholar
  22. 22.
    Tesauro, G.: Temporal difference learning and TD-Gammon. Commun. ACM 38(3), 58–68 (1995)CrossRefGoogle Scholar
  23. 23.
    Tesauro, G., Galperin, G.R.: On-line policy improvement using Monte-Carlo search. In: Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Processing Systems 9, pp. 1068–1074. MIT Press (1997)Google Scholar
  24. 24.
    Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3), 279–292 (1992)zbMATHGoogle Scholar
  25. 25.
    Werbos, P.J.: Beyond regression: new tools for prediction and analysis in the behavioral sciences. Ph.D. thesis, Harvard University (1974)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Stefan J. L. Knegt
    • 1
  • Madalina M. Drugan
    • 2
  • Marco A. Wiering
    • 1
    Email author
  1. 1.Institute of Artificial Intelligence and Cognitive EngineeringUniversity of GroningenGroningenThe Netherlands
  2. 2.ITLearns.OnlineUtrechtThe Netherlands

Personalised recommendations