Advertisement

SEMTec: Social Emotion Mining Techniques for Analysis and Prediction of Facebook Post Reactions

  • Tobias Moers
  • Florian Krebs
  • Gerasimos SpanakisEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11352)

Abstract

Nowadays social media are utilized by many people in order to review products and services. Subsequently, companies can use this feedback in order to improve customer experience. Facebook provided its users with the ability to express their experienced emotions by using five so-called ‘reactions’. Since this launch happened in 2016, this paper is one of the first approaches to provide a complete framework for evaluating different techniques for predicting reactions to user posts on public pages. For this purpose, we used the FacebookR dataset that contains Facebook posts (along with their comments and reactions) of the biggest international supermarket chains. In order to build a robust and accurate prediction pipeline state-of-the-art neural network architectures (convolutional and recurrent neural networks) were tested using pretrained word embeddings. The models are further improved by introducing a bootstrapping approach for sentiment and emotion mining on the comments for each post and a data augmentation technique to obtain an even more robust predictor. The final proposed pipeline is a combination of a neural network and a baseline emotion miner and is able to predict the reaction distribution on Facebook posts with a mean squared error (or misclassification rate) of 0.1326.

Keywords

Emotion mining Social media Deep learning Natural language processing 

References

  1. 1.
    Ortigosa, A., Martín, J.M., Carro, R.M.: Sentiment analysis in Facebook and its application to e-learning. Comput. Hum. Behav. 31, 527–541 (2014)CrossRefGoogle Scholar
  2. 2.
    Feldman, R.: Techniques and applications for sentiment analysis. Commun. ACM 56, 82–89 (2013)CrossRefGoogle Scholar
  3. 3.
    Troussas, C., Virvou, M., Espinosa, K.J., Llaguno, K., Caro, J.: Sentiment analysis of Facebook statuses using Naive Bayes classifier for language learning. In: 2013 Fourth International Conference on Information, Intelligence, Systems and Applications (IISA), pp. 1–6. IEEE (2013)Google Scholar
  4. 4.
    Fan, W., Gordon, M.D.: The power of social media analytics. Commun. ACM 57, 74–81 (2014)CrossRefGoogle Scholar
  5. 5.
    Krebs, F., Lubascher, B., Moers, T., Schaap, P., Spanakis, G.: Social emotion mining techniques for Facebook posts reaction prediction. In: Proceedings of the 10th International Conference on Agents and Artificial Intelligence, pp. 211–220 (2018)Google Scholar
  6. 6.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)CrossRefGoogle Scholar
  7. 7.
    Kim, Y.: Convolutional neural networks for sentence classification. CoRR abs/1408.5882 (2014)Google Scholar
  8. 8.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)CrossRefGoogle Scholar
  9. 9.
    Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)
  10. 10.
    Hochreiter, S.: The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 6, 107–116 (1998)CrossRefGoogle Scholar
  11. 11.
    Wang, G., Sun, J., Ma, J., Xu, K., Gu, J.: Sentiment classification: the contribution of ensemble learning. Decis. Support Syst. 57, 77–93 (2014)CrossRefGoogle Scholar
  12. 12.
    Wang, X., Wei, F., Liu, X., Zhou, M., Zhang, M.: Topic sentiment analysis in Twitter: a graph-based hashtag sentiment classification approach. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pp. 1031–1040. ACM (2011)Google Scholar
  13. 13.
    Kouloumpis, E., Wilson, T., Moore, J.D.: Twitter sentiment analysis: the good the bad and the omg!. Icwsm 11, 164 (2011)Google Scholar
  14. 14.
    Saif, H., He, Y., Alani, H.: Semantic sentiment analysis of Twitter. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012. LNCS, vol. 7649, pp. 508–524. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-35176-1_32CrossRefGoogle Scholar
  15. 15.
    Sarlan, A., Nadam, C., Basri, S.: Twitter sentiment analysis. In: 2014 International Conference on Information Technology and Multimedia (ICIMU), pp. 212–216. IEEE (2014)Google Scholar
  16. 16.
    Mohammad, S.M., Turney, P.D.: Crowdsourcing a word-emotion association lexicon. Comput. Intell. 29, 436–465 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Canales, L., Strapparava, C., Boldrini, E., Martínez-Barco, P.: Exploiting a bootstrapping approach for automatic annotation of emotions in texts. In: 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 726–734 (2016)Google Scholar
  18. 18.
    Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
  19. 19.
    Tian, Y., Galery, T., Dulcinati, G., Molimpakis, E., Sun, C.: Facebook sentiment: Reactions and emojis. In: SocialNLP 2017, p. 11 (2017)Google Scholar
  20. 20.
    Pool, C., Nissim, M.: Distant supervision for emotion detection using Facebook reactions. arXiv preprint arXiv:1611.02988 (2016)
  21. 21.
    Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using machine learning techniques. In: Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing, vol. 10, pp. 79–86. Association for Computational Linguistics (2002)Google Scholar
  22. 22.
    Glorot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment classification: a deep learning approach. In: Proceedings of the 28th International Conference on Machine Learning (ICML 2011), pp. 513–520 (2011)Google Scholar
  23. 23.
    Socher, R., et al.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631–1642 (2013)Google Scholar
  24. 24.
    Yang, C., Lin, K.H.Y., Chen, H.H.: Emotion classification using web blog corpora. In: IEEE/WIC/ACM International Conference on Web Intelligence, pp. 275–278. IEEE (2007)Google Scholar
  25. 25.
    Wen, S., Wan, X.: Emotion classification in microblog texts using class sequential rules. In: AAAI, pp. 187–193 (2014)Google Scholar
  26. 26.
    Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: LREc, vol. 10 (2010)Google Scholar
  27. 27.
    Yang, Z., Fang, X.: Online service quality dimensions and their relationships with satisfaction: a content analysis of customer reviews of securities brokerage services. Int. J. Serv. Indus. Manag. 15, 302–326 (2004)CrossRefGoogle Scholar
  28. 28.
    Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 168–177. ACM (2004)Google Scholar
  29. 29.
    Cambria, E., Schuller, B., Xia, Y., Havasi, C.: New avenues in opinion mining and sentiment analysis. IEEE Intell. Syst. 28, 15–21 (2013)CrossRefGoogle Scholar
  30. 30.
    Perez, L., Wang, J.: The effectiveness of data augmentation in image classification using deep learning (2017)Google Scholar
  31. 31.
    Mariani, G., Scheidegger, F., Istrate, R., Bekas, C., Malossi, C.: BAGAN: Data Augmentation with Balancing GAN. ArXiv e-prints (2018)Google Scholar
  32. 32.
    Antoniou, A., Storkey, A., Edwards, H.: Data Augmentation Generative Adversarial Networks. ArXiv e-prints (2017)Google Scholar
  33. 33.
    Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: Synthetic data augmentation using GAN for improved liver lesion classification. CoRR abs/1801.02385 (2018)Google Scholar
  34. 34.
    Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: GAN-based Synthetic Medical Image Augmentation for increased CNN Performance in Liver Lesion Classification. ArXiv e-prints (2018)Google Scholar
  35. 35.
    Zhang, X., LeCun, Y.: Text understanding from scratch (2015) cite arxiv:1502.01710 Comment: This technical report is superseded by a paper entitled “Character-level Convolutional Networks for Text Classification”, arXiv:1509.01626. It has considerably more experimental results and a rewritten introduction
  36. 36.
    Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The stanford CoreNLP natural language processing toolkit. In: Association for Computational Linguistics (ACL) System Demonstrations, pp. 55–60 (2014)Google Scholar
  37. 37.
    Singh, T., Kumari, M.: Role of text pre-processing in Twitter sentiment analysis. Procedia Comput. Sci. 89, 549–554 (2016)Google Scholar
  38. 38.
    Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python, 1st edn. O’Reilly Media, Inc., Sebastopol (2009)Google Scholar
  39. 39.
    Fellbaum, C.: WordNet: An Electronic Lexical Database. Bradford Books (1998)Google Scholar
  40. 40.
    Farooq, U., Nongaillard, A., Ouzrout, Y., Qadir, M.A.: Negation handling in sentiment analysis at sentence level. In: International Conference on Information Management, London, United Kingdom (2016)Google Scholar
  41. 41.
    Arora, S., Yingyu Liang, T.M.: A simple but tough-to-beat baseline for sentence embeddings (2017)Google Scholar
  42. 42.
    Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 24, 513–523 (1988)CrossRefGoogle Scholar
  43. 43.
    Abadi, M., et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)
  44. 44.
    Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)Google Scholar
  45. 45.
    Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850 (2013)
  46. 46.
    Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)Google Scholar
  47. 47.
    Masnadi-Shirazi, H., Vasconcelos, N.: On the design of loss functions for classification: theory, robustness to outliers, and savageboost. In: Advances in Neural Information Processing Systems, pp. 1049–1056 (2009)Google Scholar
  48. 48.
    Deng, L., Wiebe, J.: MPQA 3.0: an entity/event-level sentiment corpus. In: Mihalcea, R., Chai, J.Y., Sarkar, A. (eds.) HLT-NAACL, The Association for Computational Linguistics, pp. 1323–1328 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tobias Moers
    • 1
  • Florian Krebs
    • 1
  • Gerasimos Spanakis
    • 1
    Email author
  1. 1.Department of Data Science and Knowledge EngineeringMaastricht UniversityMaastrichtThe Netherlands

Personalised recommendations