Social Media Group Structure and Its Goals: Building an Order

  • Danila A. Vaganov
  • Valentina Y. GulevaEmail author
  • Klavdia O. Bochenina
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 813)


Building the interrelation between goals and functions of on-line social groups and their topological properties allows for recognition of special communities and anomalies in on-line social media. Network structures of on-line groups are poorly studied as well as social aspects of their formation. Current research does an attempt to connect structure and function, and to order communities according to their thematics and topological features. We compared normal and anomalous networks, comprising the following types of interest: food, football, cinema, games, radical politics, commercial sex workers, and substance sellers. For measuring and ordering the networks we used measures, related to degree, clustering, and path properties, effectiveness, hyperbolicity, spreading characteristic, and modularity.



We are grateful to Max Petrov for his help with data collection. This research is financially supported by The Russian Science Foundation, Agreement #17–71–30029 with co-financing of Bank Saint Petersburg.


  1. 1.
    Ahn, Y.Y., Han, S., Kwak, H., Moon, S., Jeong, H.: Analysis of topological characteristics of huge online social networking services. In: Proceedings of the 16th International Conference on World Wide Web, WWW 2007, pp. 835–844. ACM, New York, NY, USA (2007).
  2. 2.
    Alstott, J., Bullmore, E., Plenz, D.: powerlaw: a python package for analysis of heavy-tailed distributions. PloS one 9(1), e85,777 (2014)CrossRefGoogle Scholar
  3. 3.
    Boguná, M., Pastor-Satorras, R.: Epidemic spreading in correlated complex networks. Phys. Rev. E 66(4), 047,104 (2002)CrossRefGoogle Scholar
  4. 4.
    Borassi, M., Coudert, D., Crescenzi, P., Marino, A.: On computing the hyperbolicity of real-world graphs. Algorithms-ESA 2015, pp. 215–226. Springer, Berlin (2015)CrossRefGoogle Scholar
  5. 5.
    Chepoi, V., Dragan, F.F., Estellon, B., Habib, M., Vaxès, Y.: Notes on diameters, centers, and approximating trees of \(\delta \)-hyperbolic geodesic spaces and graphs. Electron. Notes Discret. Math. 31, 231–234 (2008)Google Scholar
  6. 6.
    Chung, F.: Laplacians and the cheeger inequality for directed graphs. Ann. Comb. 9(1), 1–19 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dong, G., et al.: Resilience of networks with community structure behaves as if under an external field. In: Proceedings of the National Academy of Sciences, p. 201801588 (2018)Google Scholar
  8. 8.
    Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.: Critical phenomena in complex networks. Rev. Mod. Phys. 80(4), 1275 (2008)CrossRefGoogle Scholar
  9. 9.
    Ferrara, E.: A large-scale community structure analysis in facebook. EPJ Data Sci. 1(1), 9 (2012).
  10. 10.
    Gao, L., Wang, W., Pan, L., Tang, M., Zhang, H.F.: Effective information spreading based on local information in correlated networks. Sci. Rep. 6, 38,220 (2016).
  11. 11.
    Gilarranz, L.J., Rayfield, B., Liñán-Cembrano, G., Bascompte, J., Gonzalez, A.: Effects of network modularity on the spread of perturbation impact in experimental metapopulations. Science 357(6347), 199–201 (2017)CrossRefGoogle Scholar
  12. 12.
    Gromov, M.: Hyperbolic groups. Essays in Group Theory, pp. 75–263. Springer, Berlin (1987)CrossRefGoogle Scholar
  13. 13.
    Guleva, V., Vaganov, D., Voloshin, D., Bochenina, K.: Topology of thematic communities in online social networks: a comparative study. International Conference on Computational Science, pp. 260–273. Springer, Berlin (2018)Google Scholar
  14. 14.
    Kolchinsky, A., Gates, A.J., Rocha, L.M.: Modularity and the spread of perturbations in complex dynamical systems. Phys. Rev. E 92(6), 060,801 (2015)CrossRefGoogle Scholar
  15. 15.
    Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguná, M.: Hyperbolic geometry of complex networks. Phys. Rev. E 82(3), 036,106 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87(19), 198,701 (2001)CrossRefGoogle Scholar
  17. 17.
    Moore, C., Newman, M.E.: Epidemics and percolation in small-world networks. Phys. Rev. E 61(5), 5678 (2000)CrossRefGoogle Scholar
  18. 18.
    Morone, F., Makse, H.A.: Influence maximization in complex networks through optimal percolation. Nature 524(7563), 65 (2015)CrossRefGoogle Scholar
  19. 19.
    Pei, S., Muchnik, L., Tang, S., Zheng, Z., Makse, H.A.: Exploring the complex pattern of information spreading in online blog communities. PloS one 10(5), e0126,894 (2015)CrossRefGoogle Scholar
  20. 20.
    Savage, D., Zhang, X., Yu, X., Chou, P., Wang, Q.: Anomaly detection in online social networks. Soc. Netw. 39, 62–70 (2014)CrossRefGoogle Scholar
  21. 21.
    Schank, T., Wagner, D.: Approximating clustering-coefficient and transitivity. Universität Karlsruhe, Fakultät für Informatik (2004)zbMATHGoogle Scholar
  22. 22.
    Thom-Santelli, J., Muller, M.J., Millen, D.R.: Social tagging roles: publishers, evangelists, leaders. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1041–1044. ACM (2008)Google Scholar
  23. 23.
    Volchenkov, D., Volchenkova, L., Blanchard, P.: Epidemic spreading in a variety of scale free networks. Phys. Rev. E 66(4), 046,137 (2002)CrossRefGoogle Scholar
  24. 24.
    Wu, Y., Zhang, C.: Hyperbolicity and chordality of a graph. Electron. J. Comb. 18(1), 43 (2011)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Danila A. Vaganov
    • 1
  • Valentina Y. Guleva
    • 1
    • 2
    Email author
  • Klavdia O. Bochenina
    • 1
  1. 1.ITMO UniversitySaint-PetersburgRussia
  2. 2.Kurchatov InstituteMoscowRussia

Personalised recommendations