Quantum Walk Neural Networks for Graph-Structured Data

  • Stefan DernbachEmail author
  • Arman Mohseni-Kabir
  • Siddharth Pal
  • Don Towsley
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 813)


In recent years, neural network architectures designed to operate on graph-structured data have pushed the state-of-the-art in the field. A large set of these architectures utilize a form of classical random walks to diffuse information throughout the graph. We propose quantum walk neural networks (QWNN), a novel graph neural network architecture based on quantum random walks, the quantum parallel to classical random walks. A QWNN learns a quantum walk on a graph to construct a diffusion operator which can then be applied to graph-structured data. We demonstrate the use of this model on a variety of prediction tasks on graphs involving temperature, biological, and molecular datasets.


Graph neural networks Quantum walks Graph classification Graph regression 


  1. 1.
    Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pp. 50–59. ACM (2001)Google Scholar
  2. 2.
    Ambainis, A.: Quantum walks and their algorithmic applications. Int. J. Quantum Inf. 1(04), 507–518 (2003)CrossRefGoogle Scholar
  3. 3.
    Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pp. 37–49. ACM (2001)Google Scholar
  4. 4.
    Atwood, J., Towsley, D.: Diffusion-convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1993–2001 (2016)Google Scholar
  5. 5.
    Bai, L., Rossi, L., Cui, L., Zhang, Z., Ren, P., Bai, X., Hancock, E.: Quantum kernels for unattributed graphs using discrete-time quantum walks. Pattern Recognit. Lett. 87, 96–103 (2017)CrossRefGoogle Scholar
  6. 6.
    Blum, L.C., Reymond, J.L.: 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. J. Am. Chem. Soc. 131, 8732 (2009)CrossRefGoogle Scholar
  7. 7.
    Borgwardt, K.M., Ong, C.S., Schönauer, S., Vishwanathan, S., Smola, A.J., Kriegel, H.P.: Protein function prediction via graph kernels. Bioinformatics 21(suppl\(\_\)1), i47–i56 (2005)Google Scholar
  8. 8.
    Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2), 163–177 (2001)CrossRefGoogle Scholar
  9. 9.
    Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. In: International Conference on Learning Representations (ICLR2014), CBLS, April 2014 (2014)Google Scholar
  10. 10.
    Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102(18), 180,501 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Debnath, A.K., Lopez de Compadre, R.L., Debnath, G., Shusterman, A.J., Hansch, C.: Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds correlation with molecular orbital energies and hydrophobicity. J. Med. Chem. 34(2), 786–797 (1991)Google Scholar
  12. 12.
    Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, pp. 3844–3852 (2016)Google Scholar
  13. 13.
    Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, pp. 1024–1034 (2017)Google Scholar
  14. 14.
    Jing, L., et al.: Tunable efficient unitary neural networks (EUNN) and their application to RNN (2016). arXiv:1612.05231
  15. 15.
    Kendon, V.: Quantum walks on general graphs. Int. J. Quantum Inf. 4(05), 791–805 (2006)CrossRefGoogle Scholar
  16. 16.
    Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks (2016). arXiv:1609.02907
  17. 17.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  18. 18.
    Monti, F., Bronstein, M., Bresson, X.: Geometric matrix completion with recurrent multi-graph neural networks. In: Advances in Neural Information Processing Systems, pp. 3697–3707 (2017)Google Scholar
  19. 19.
    Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710. ACM (2014)Google Scholar
  20. 20.
    Qiang, X., Yang, X., Wu, J., Zhu, X.: An enhanced classical approach to graph isomorphism using continuous-time quantum walk. J. Phys. A: Math. Theor. 45(4), 045,305 (2012)Google Scholar
  21. 21.
    Rohde, P.P., Schreiber, A., Štefaňák, M., Jex, I., Silberhorn, C.: Multi-walker discrete time quantum walks on arbitrary graphs, their properties and their photonic implementation. New J. Phys. 13(1), 013,001 (2011)CrossRefGoogle Scholar
  22. 22.
    Rupp, M., Tkatchenko, A., Müller, K.R., von Lilienfeld, O.A.: Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108, 058,301 (2012)Google Scholar
  23. 23.
    Schomburg, I., Chang, A., Ebeling, C., Gremse, M., Heldt, C., Huhn, G., Schomburg, D.: Brenda, the enzyme database: updates and major new developments. Nucleic Acids Res. 32(suppl\(_1\)), D431–D433 (2004)Google Scholar
  24. 24.
    Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67(5), 052,307 (2003)Google Scholar
  25. 25.
    Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks (2017). arXiv:1710.10903
  26. 26.
    Wale, N., Watson, I.A., Karypis, G.: Comparison of descriptor spaces for chemical compound retrieval and classification. Knowl. Inf. Syst. 14(3), 347–375 (2008)CrossRefGoogle Scholar
  27. 27.
    Williams, C., Vose, R., Easterling, D., Menne, M.: United states historical climatology network daily temperature, precipitation, and snow data. ORNL/CDIAC-118, NDP-070. Available on-line from the Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, USA (2006)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Stefan Dernbach
    • 1
    Email author
  • Arman Mohseni-Kabir
    • 1
  • Siddharth Pal
    • 2
  • Don Towsley
    • 1
  1. 1.University of Massachusetts AmherstAmherstUSA
  2. 2.Raytheon BBN TechnologiesCambridgeUSA

Personalised recommendations