Multi-Net: A Scalable Multiplex Network Embedding Framework

  • Arunkumar BagavathiEmail author
  • Siddharth Krishnan
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 813)


Representation learning of networks has witnessed significant progress in recent times. Such representations have been effectively used for classic network-based machine learning tasks like node classification, link prediction, and network alignment. However, very few methods focus on capturing representations for multiplex or multilayer networks, which are more accurate and detailed representations of complex networks. In this work, we propose Multi-Net a fast and scalable embedding technique for multiplex networks. Multi-Net, effectively maps nodes to a lower-dimensional space while preserving its neighborhood properties across all the layers. We utilize four random walk strategies in our unified network embedding model, thus making our approach more robust than existing state-of-the-art models. We demonstrate superior performance of Multi-Net on four real-world datasets from different domains. In particular, we highlight the uniqueness of Multi-Net by leveraging it for the complex task of network reconstruction.


Multiplex networks Network embedding Random walks 


  1. 1.
    Backstrom, L., Leskovec, J.: Supervised random walks: predicting and recommending links in social networks. In: Proceedings of the fourth ACM international conference on Web search and data mining, pp. 635–644. ACM, New York (2011)Google Scholar
  2. 2.
    Benson, A.R., Gleich, D.F., Leskovec, J.: Higher-order organization of complex networks. Science 353(6295), 163–166 (2016)CrossRefGoogle Scholar
  3. 3.
    Bhagat, S., Cormode, G., Muthukrishnan, S.: Node classification in social networks. Social Network Data Analytics, pp. 115–148. Springer, Boston (2011)CrossRefGoogle Scholar
  4. 4.
    Boccaletti, S., Bianconi, G., Criado, R., Del Genio, C.I., Gómez-Gardenes, J., Romance, M., Sendina-Nadal, I., Wang, Z., Zanin, M.: The structure and dynamics of multilayer networks. Phys. Rep. 544(1), 1–122 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chen, B.L., Hall, D.H., Chklovskii, D.B.: Wiring optimization can relate neuronal structure and function. Proc. Natl. Acad. Sci. 103(12), 4723–4728 (2006)CrossRefGoogle Scholar
  6. 6.
    De Domenico, M., Lima, A., Mougel, P., Musolesi, M.: The anatomy of a scientific rumor. Sci. Rep. 3, 2980 (2013)CrossRefGoogle Scholar
  7. 7.
    De Domenico, M., Porter, M.A., Arenas, A.: Muxviz: a tool for multilayer analysis and visualization of networks. J. Complex Netw. 3(2), 159–176 (2015)CrossRefGoogle Scholar
  8. 8.
    Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864. ACM, New York (2016)Google Scholar
  9. 9.
    Guo, Q., Cozzo, E., Zheng, Z., Moreno, Y.: Levy random walks on multiplex networks. Sci. Rep. 6, 37,641 (2016)CrossRefGoogle Scholar
  10. 10.
    Kramer, M., Dutkowski, J., Yu, M., Bafna, V., Ideker, T.: Inferring gene ontologies from pairwise similarity data. Bioinformatics 30(12), i34–i42 (2014). Scholar
  11. 11.
    Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International Conference on Machine Learning, pp. 1188–1196 (2014)Google Scholar
  12. 12.
    Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed networks in social media. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1361–1370. ACM, New York (2010)Google Scholar
  13. 13.
    Leskovec, J., Mcauley, J.J.: Learning to discover social circles in ego networks. In: Advances in Neural Information Processing Systems, pp. 539–547 (2012)Google Scholar
  14. 14.
    Liu, W., Lü, L.: Link prediction based on local random walk. EPL (Europhys. Lett.) 89(5), 58007 (2010)CrossRefGoogle Scholar
  15. 15.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, vol. 26, pp. 3111–3119. Curran Associates, Inc. (2013)Google Scholar
  16. 16.
    Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710. ACM, New York (2014)Google Scholar
  17. 17.
    Pons, P., Latapy, M.: Computing communities in large networks using random walks. J. Graph Algorithms Appl. 10(2), 191–218 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Rossi, R.A., Gallagher, B., Neville, J., Henderson, K.: Modeling dynamic behavior in large evolving graphs. In: Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, pp. 667–676. ACM, New York (2013)Google Scholar
  19. 19.
    Solé-Ribalta, A., De Domenico, M., Gómez, S., Arenas, A.: Random walk centrality in interconnected multilayer networks. Phys. D Nonlinear Phenom. 323, 73–79 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: Biogrid: a general repository for interaction datasets. Nucleic Acids Res. 34(suppl–1), D535–D539 (2006)CrossRefGoogle Scholar
  21. 21.
    Zhang, H., Qiu, L., Yi, L., Song, Y.: In: Scalable multiplex network embedding. In: IJCAI, pp. 3082–3088(2018)Google Scholar
  22. 22.
    Zitnik, M., Leskovec, J.: Predicting multicellular function through multi-layer tissue networks. Bioinformatics 33(14), i190–i198 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of North CarolinaCharlotteUSA

Personalised recommendations