Advertisement

Computational Aspects of Fault Location and Resilience Problems for Interdependent Infrastructure Networks

  • Madhav V. Marathe
  • S. S. Ravi
  • Daniel J. Rosenkrantz
  • Richard E. Stearns
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 812)

Abstract

Motivated by applications in diagnosing failures in complex infrastructure networks, we consider the configuration sequence completion problem (CSC) for networked systems. The goal of the CSC problem is to choose values for unknown entries in a specified sequence of configurations of a system so that the resulting sequence represents a valid trajectory of the system. This problem generalizes some known decision problems for dynamical systems. We present efficient algorithms for some versions of the CSC problem and computational intractability results for other versions.

Notes

Acknowledgments

We thank Professors Arun Phadke and late Jim Thorp (Virginia Tech) for discussions related to problems studied in this paper. We thank the referees for providing helpful comments. This work has been partially supported by DARPA Cooperative Agreement D17AC00003 (NGS2), DTRA CNIMS (Contract HDTRA1-11-D-0016-0001), NSF DIBBS Grant ACI-1443054, NSF BIG DATA Grant IIS-1633028 and NSF EAGER Grant CMMI-1745207.

References

  1. 1.
    Amin, M.: Toward secure and resilient interdependent infrastructures. J. Infrastruct. Syst. 8(3), 67–75 (2002)Google Scholar
  2. 2.
    Banerjee, J., Basu, K., Sen, A.: Analysing robustness in intra-dependent and inter-dependent networks using a new model of interdependency. Int. J. Crit. Infrastruct. 14(2), 156–181 (2018)Google Scholar
  3. 3.
    Banerjee, J., Das, A., Sen, A.: A survey of interdependency models for critical infrastructure networks. arXiv:1702.05407 (2017)
  4. 4.
    Barrett, C., Eubank, S., Kumar, V.A., Marathe, M.V.: Understanding large scale social and infrastructure networks: a simulation based approach. SIAM News 37(4), 1–5 (2004)Google Scholar
  5. 5.
    Barrett, C., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: Modeling and analyzing social network dynamics using stochastic discrete graphical dynamical systems. Theoret. Comput. Sci. 412(30), 3932–3946 (2011)Google Scholar
  6. 6.
    Barrett, C., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E., Thakur, M.: Predecessor existence problems for finite discrete dynamical systems. Theoret. Comput. Sci. 386(1), 3–37 (2007)Google Scholar
  7. 7.
    Bodlaender, H.: Treewidth: algorithmic techniques and results. In: Proceedings 22nd MFCS, pp. 29–36 (1997)Google Scholar
  8. 8.
    Brummitt, C.D., D’Souza, R.M., Leicht, E.A.: Suppressing cascades of load in interdependent networks. Proc. Nat. Acad. Sci. 109(12), E680–E689 (2012)Google Scholar
  9. 9.
    Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464 (2010)Google Scholar
  10. 10.
    Crama, Y., Hammer, P.: Boolean Functions: Theory, Algorithms, and Applications. Cambridge University Press, New York, NY (2011)Google Scholar
  11. 11.
    Dobson, I., Chen, J., Thorp, J., Carreras, B.A., Newman, D.E.: Examining criticality of blackouts in power system models with cascading events. In: Proceedings 35th Annual Hawaii International Conference on System Sciences (HICSS) (2002). 10 pagesGoogle Scholar
  12. 12.
    Galbusera, L., Giannopoulos, G., Argyroudis, S., Kakderi, K.: A Boolean networks approach to modeling and resilience analysis of interdependent critical infrastructures. In: Computer-Aided Civil and Infrastructure Engineering, pp. 1–15 (2018)Google Scholar
  13. 13.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. W. H. Freeman & Co., San Francisco (1979)Google Scholar
  14. 14.
    Green, F.: NP-complete problems in cellular automata. Complex Syst. 1(3), 453–474 (1987)Google Scholar
  15. 15.
    Haimes, Y.Y., Horowitz, B.M., Lambert, J.H., Santos, J.R., Lian, C., Crowther, K.G.: Inoperability input-output model for interdependent infrastructure sectors I: theory and methodology. J. Infrastruct. Syst. 11(2), 67–79 (2005)Google Scholar
  16. 16.
    Haimes, Y.Y., Jiang, P.: Leontief-based model of risk in complex interconnected infrastructures. J. Infrastruct. Syst. 7(1), 1–12 (2001)Google Scholar
  17. 17.
    Horowitz, S.H., Phadke, A.G.: Boosting immunity to blackouts. IEEE Power Energy Mag 99(5), 47–53 (2003)Google Scholar
  18. 18.
    Kawachi, A., Ogihara, M., Uchizawa, K.: Generalized predecessor existence problems for boolean finite dynamical systems. In: 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017), pp. 8:1–8:13 (2017)Google Scholar
  19. 19.
    Little, R.G.: Controlling cascading failure: understanding the vulnerabilities of interconnected infrastructures. J. Urban Technol. 9(1), 109–123 (2002)Google Scholar
  20. 20.
    Parandehgheibi, M., Modiano, E.: Robustness of interdependent networks: the case of communication networks and the power grid. In: Global Communications Conference (GLOBECOM), 2013 IEEE, pp. 2164–2169. IEEE (2013)Google Scholar
  21. 21.
    Phadke, A., Thorp, J.S.: Expose hidden failures to prevent cascading outages [in power systems]. IEEE Comput. Appl. Power 9(3), 20–23 (1996)Google Scholar
  22. 22.
    Rinaldi, S.M., Peerenboom, J.P., Kelly, T.K.: Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Syst. 21(6), 11–25 (2001)Google Scholar
  23. 23.
    Rosato, V., Issacharoff, L., Tiriticco, F., Meloni, S., Porcellinis, S., Setola, R.: Modelling interdependent infrastructures using interacting dynamical models. Int. J. Crit. Infrastruct. 4(1–2), 63–79 (2008)Google Scholar
  24. 24.
    Shao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Cascade of failures in coupled network systems with multiple support-dependence relations. Phys. Rev. E 83(3), 036,116 (2011)Google Scholar
  25. 25.
    Tamronglak, S., Horowitz, S., Phadke, A., Thorp, J.: Anatomy of power system blackouts: preventive relaying strategies. IEEE Trans. Power Deliv. 11(2), 708–715 (1996)Google Scholar
  26. 26.
    Vespignani, A.: The fragility of interdependency. Nature 464, 984–985 (2010)Google Scholar
  27. 27.
    Wallace, W.A., Mendonça, D., Lee, E., Mitchell, J., Chow, J.: Managing disruptions to critical interdependent infrastructures in the context of the 2001 World Trade Center attack. In: Impacts of and Human Response to the September 11, 2001 Disasters: What Research Tells Us (2001)Google Scholar
  28. 28.
    Wang, W., Yang, S., Hu, F., Stanley, H.E., He, S., Shi, M.: An approach for cascading effects within critical infrastructure systems. Phys. A Stat. Mech. Appl. 510, 164–177 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Madhav V. Marathe
    • 1
  • S. S. Ravi
    • 1
    • 2
  • Daniel J. Rosenkrantz
    • 2
  • Richard E. Stearns
    • 2
  1. 1.University of VirginiaCharlottesvilleUSA
  2. 2.University at Albany – SUNYAlbanyUSA

Personalised recommendations