Enhancing Synchronization Stability in Complex Networks with Probabilistic Natural Frequencies

  • K. Y. Henry TsangEmail author
  • Bo Li
  • K. Y. Michael Wong
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 812)


Synchronization is crucial for different natural or artificial systems. In power grids, synchronization in the system is essential for stable electricity transmission. However, fluctuations in power supply and demand can destabilize synchronization, especially with the increasing deployment of renewable sources. In real-time applications, one can only access their probabilistic information in the near future. Hence the synchronization stability is no longer a well-defined value, and we need to minimize the tail of its distribution. Remarkably, we found that by optimizing the mean value of the synchronization stability, the variance is also reduced. Hence the load shedding scheme optimizing the mean stability is sufficient in the presence of probabilistic uncertainties of the natural frequencies. In addition, we introduce a vulnerability measure of individual nodes to demonstrate how the topology of the network affects the synchronization stability.


State-dependent algebraic connectivity Synchronization stability Optimal resources adjustment 



We thank David Saad for fruitful discussions. This work is supported by research grants from the Research Grants Council of Hong Kong (grant numbers 16322616 and 16306817).


  1. 1.
    Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Science. Cambridge University Press, Cambridge (2002)Google Scholar
  2. 2.
    Simeone, O., Spagnolini, U.: Distributed time synchronization in wireless sensor networks withcoupled discrete-time oscillators. EURASIP J. Wirel. Commun. Netw. 2007(1), 057054 (2007)Google Scholar
  3. 3.
    Kundur, P., Balu, N.J., Lauby, M.G.: Power System Stability and Control, vol. 7. McGraw-Hill, New York (1994)Google Scholar
  4. 4.
    Hill, D.J., Chen, G.: Power systems as dynamic networks. In: 2006 IEEE International Symposium on Circuits and Systems, 2006. ISCAS 2006. Proceedings. IEEE (2006)Google Scholar
  5. 5.
    Schmietendorf, K., Peinke, J., Friedrich, R., Kamps, O.: Self-organized synchronization and voltage stability in networks of synchronous machines. Eur. Phys. J. Spec. Top. 223(12), 2577–2592 (2014)Google Scholar
  6. 6.
    Machowski, J., Bialek, J., Bumby, J.R., Bumby, J.: Power System Dynamics and Stability. Wiley, New York (1997)Google Scholar
  7. 7. Information on electric systems disturbances in North America
  8. 8.
    Crucitti, P., Latora, V., Marchiori, M.: Model for cascading failures in complex networks. Phys. Rev. E 69(4), 045104 (2004)Google Scholar
  9. 9.
    Witthaut, D., Timme, M.: Braess’s paradox in oscillator networks, desynchronization and poweroutage. New J. Phys. 14(8), 083036 (2012)Google Scholar
  10. 10.
    Menck, P.J., Heitzig, J., Kurths, J., Schellnhuber, H.J.: How dead ends undermine power grid stability. Nat. Commun. 5, 3969 (2014)Google Scholar
  11. 11.
    Harrison, E., Saad, D., Michael Wong, K.Y.: Message passing for distributed optimisation of power allocation with renewable resources. In: 2016 2nd International Conference on Intelligent Green Building and Smart Grid (IGBSG), pp. 1–6. IEEE (2016)Google Scholar
  12. 12.
    Bienstock, D., Chertkov, M., Harnett, S.: Chance-constrained optimal power flow: risk-aware network control under uncertainty. SIAM Rev. 56(3), 461–495 (2014)Google Scholar
  13. 13.
    Bienstock, D.: Optimal control of cascading power grid failures. In: 2011 50th IEEE Conference on Decision and control and European Control Conference (CDC-ECC), pp. 2166–2173. IEEE (2011)Google Scholar
  14. 14.
    Li, B., Michael Wong, K.Y.: Optimizing synchronization stability of the Kuramoto model in complex networks and power grids. Phys. Rev. E 95(1), 012207 (2017)Google Scholar
  15. 15.
    Dörfler, F., Chertkov, M., Bullo, F.: Synchronization in complex oscillator networks and smart grids. Proc. Natl. Acad. Sci. 110(6), 2005–2010 (2013)Google Scholar
  16. 16.
    Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469(3), 93–153 (2008)Google Scholar
  17. 17.
    Dörfler, F., Bullo, F.: Synchronization in complex networks of phase oscillators: a survey. Automatica 50(6), 1539–1564 (2014)Google Scholar
  18. 18.
    Milanese, A., Sun, J., Nishikawa, T.: Approximating spectral impact of structural perturbations in large networks. Phys. Rev. E 81(4), 046112 (2010)Google Scholar
  19. 19.
    Chung, F.R.K., Graham, F.C.: Spectral Graph Theory, vol. 92. American Mathematical Society, Providence (1997)Google Scholar
  20. 20.
    Araposthatis, A., Sastry, S., Varaiya, P.: Analysis of power-flow equation. Int. J. Electr. Power Energy Syst. 3(3), 115–126 (1981)Google Scholar
  21. 21.
    Mallada, E., Tang, A.: Improving damping of power networks: power scheduling and impedance adaptation. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), pp. 7729–7734. IEEE (2011)Google Scholar
  22. 22.
    Grzybowski, J.M.V., Macau, E.E.N., Yoneyama, T.: On synchronization in power-grids modelled as networks of second-order Kuramoto oscillators. Chaos Interdiscip. J. Nonlinear Sci. 26(11), 113113 (2016)Google Scholar
  23. 23.
    Grigg, C., et al.: The IEEE reliability test system-1996. a report prepared by the reliability test system task force of the application of probability methods subcommittee. IEEE Trans. Power Syst. 14(3), 1010–1020 (1999)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • K. Y. Henry Tsang
    • 1
    Email author
  • Bo Li
    • 2
  • K. Y. Michael Wong
    • 1
  1. 1.Department of PhysicsThe Hong Kong University of Science and TechnologyHong KongHong Kong
  2. 2.Department of Science and Environmental StudiesThe Education University of Hong KongHong KongHong Kong

Personalised recommendations