Advertisement

Effects of Interaction and Learning Distance on Cooperation in Evolutionary Games on a Multiplex Network

  • Yasuyuki Nakamura
  • Koichi Yasutake
  • Keiya Ando
  • Takahiro Tagawa
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 812)

Abstract

We investigated a two-layered multiplex network in which players interact depending on the social distance between them. The aim of this study is to clarify the effects of multi-layered structure on emergence of cooperation in the prisoner’s dilemma game including social distances, interactions, and learning distances. We found that the increase of learning distance promotes cooperation even on a multiplex network, and a cooperative strategy tends to vanish away with the parameters, which is contract to the Seltzer’s result.

Keywords

Multiplex network Prisoner’s dilemma game Social distance Cooperation 

Notes

Acknowledgement

This research was financially supported by JSPS KAKENHI grant numbers 18H01052, 18K18653 and 17K01135.

References

  1. 1.
    Nowak, M.A., May, R.M.: Evolutionary games and spatial chaos. Nature 359, 826–829 (1992)Google Scholar
  2. 2.
    Santos, F.C., Pacheco, J.M.: Scale-free networks provide a unifying framework for the emergence of cooperation. Phys. Rev. Lett. 95, 098104 (2005)Google Scholar
  3. 3.
    Szabó, G., Fáth, G: Evolutionary games on graphs. Phys. Rep. 446, 97–216 (2007)Google Scholar
  4. 4.
    Perc, M., Szolnoki, A.: Coevolutionary games—a mini review. Biosystems 99, 109–125 (2010)Google Scholar
  5. 5.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)Google Scholar
  6. 6.
    Seltzer, N., Smirnov, O.: Degrees of separation, social learning, and the evolution of cooperation in a small-world network. J. Artif. Soc. Soc. Simul. (2015).  https://doi.org/10.18564/jasss.2851
  7. 7.
    Kenett, D.Y., Perc, M., Boccaletti, S.: Networks of networks—an introduction. Chaos Solitons Fract. 80, 1–6 (2015)Google Scholar
  8. 8.
    Gómez-Gardeñes, J., Reinare, I., Arenas, A., Floría, L.M.: Evolution of cooperation in multiplex networks. Sci. Rep. (2012).  https://doi.org/10.1038/srep00620
  9. 9.
    Wang, Z., Szolnoki, A., Perc, M.: Evolution of public cooperation on interdependent networks: the impact of biased utility functions, EPL (2012).  https://doi.org/10.1209/0295-5075/97/48001
  10. 10.
    Wang, Z., Szolnoki, A., Perc, M.: Interdependent network reciprocity in evolutionary games. Sci. Rep. (2013).  https://doi.org/10.1038/srep01183
  11. 11.
    Wang, Z., Szolnoki, A., Perc, M: Optimal interdependence between networks for the evolution of cooperation. Sci. Rep. (2013).  https://doi.org/10.1038/srep02470
  12. 12.
    Wang, Z., Szolnoki, A., Perc, M: Self-organization towards optimally interdependent networks by means of coevolution. New J. Phys. (2014).  https://doi.org/10.1088/1367-2630/16/3/033041
  13. 13.
    Wang, Z., Wang, L., Perc, M.: Degree mixing in multilayer networks impedes the evolution of cooperation. Phys. Rev. E (2014).  https://doi.org/10.1103/PhysRevE.89.052813
  14. 14.
    Wang, Z., Wang, L., Szolnoki, A., Perc, M.: Evolutionary games on multilayer networks: a colloquium. Eur. Phys. J. B (2015).  https://doi.org/10.1140/epjb/e2015-60270-7
  15. 15.
    Masuda, N., Aihara, K.: Spatial prisoner’s dilemma optimally played in small-world networks. Phys. Lett. A 313, 55–61 (2003)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yasuyuki Nakamura
    • 1
  • Koichi Yasutake
    • 2
  • Keiya Ando
    • 3
  • Takahiro Tagawa
    • 4
  1. 1.Graduate School of InformaticsNagoya UniversityNagoyaJapan
  2. 2.Graduate School of Social SciencesHiroshima UniversityHigashi-HiroshimaJapan
  3. 3.Faculty of EconomicsHiroshima UniversityHigashi-HiroshimaJapan
  4. 4.Research Institute for Information TechnologyKyushu UniversityFukuokaJapan

Personalised recommendations