Advertisement

Counting Multilayer Temporal Motifs in Complex Networks

  • Hanjo D. Boekhout
  • Walter A. Kosters
  • Frank W. Takes
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 812)

Abstract

This paper proposes a novel approach to count temporal motifs in multilayer complex networks. Network motifs, i.e., small characteristic patterns of a handful of nodes and edges, have repeatedly been shown to be instrumental in understanding real-world complex systems. However, exhaustively enumerating these motifs is computationally infeasible for larger networks. Therefore, the focus of this work is on algorithms that efficiently count network motifs. This facilitates the discovery of motifs in networks with millions of nodes and edges, enabling the following three contributions of this paper. First, we propose an extension of an existing counting algorithm to also efficiently count multilayer temporal motifs. In addition to dealing with the timestamp at which a link (re-)occurs, the algorithm also efficiently counts interaction patterns across different network layers. Second, we demonstrate how partial timing, a common phenomenon in real-world settings where only part of the layers are timed, can be incorporated. Third, we assess the performance of the proposed temporal multilayer counting algorithm on a number of real-world network datasets. Experiments reveal interesting insights in the heterogen eous interplay between network layers in, for example, online expert communities, showing how particular temporal motifs are characteristic for certain layers of interaction.

Keywords

Motif counting Multilayer temporal networks Multilayer temporal motifs 

References

  1. 1.
    Battiston, F., Nicosia, V., Chavez, M., Latora, V.: Multilayer motif analysis of brain networks. Chaos: an Interdisciplinary. J. Nonlinear Sci. 27(4), 047,404 (2017)Google Scholar
  2. 2.
    Benson, A.R., Gleich, D.F., Leskovec, J.: Higher-order organization of complex networks. Science 353(6295), 163–166 (2016)Google Scholar
  3. 3.
    Braha, D., Bar-Yam, Y.: Time-dependent complex networks: dynamic centrality, dynamic motifs, and cycles of social interactions. In: Adaptive Networks, pp. 39–50. Springer (2009)Google Scholar
  4. 4.
    Gonen, M., Shavitt, Y.: Approximating the number of network motifs. Internet Math. 6(3), 349–372 (2009)Google Scholar
  5. 5.
    Grochow, J.A., Kellis, M.: Network motif discovery using subgraph enumeration and symmetry-breaking. In: Proceedings of the 11th Annual International Conference on Research in Computational Molecular Biology, pp. 92–106. Springer (2007)Google Scholar
  6. 6.
    Kamaliha, E., Riahi, F., Qazvinian, V., Adibi, J.: Characterizing network motifs to identify spam comments. In: Proceedings of the 8th IEEE International Conference on Data Mining Workshops, pp. 919–928. IEEE (2008)Google Scholar
  7. 7.
    Kivelä, M., Porter, M.A.: Isomorphisms in multilayer networks. IEEE Trans. Netw. Sci. Eng. 5(3), 198–211 (2018)Google Scholar
  8. 8.
    Kovanen, L., Karsai, M., Kaski, K., Kertész, J., Saramäki, J.: Temporal motifs in time-dependent networks. J Stat. Mech.: Theory Exp. 2011(11), P11,005 (2011)Google Scholar
  9. 9.
    Leskovec, J., Sosič, R.: SNAP: a general-purpose network analysis and graph-mining library. ACM Trans. Intell. Syst. Technol. 8(1), 1 (2016)Google Scholar
  10. 10.
    Marcus, D., Shavitt, Y.: Efficient counting of network motifs. In: Proceedings of the 30th IEEE International Conference on Distributed Computing Systems Workshops, pp. 92–98 (2010)Google Scholar
  11. 11.
    Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)Google Scholar
  12. 12.
    Paranjape, A., Benson, A.R., Leskovec, J.: Motifs in temporal networks. In: Proceedings of the 10th ACM International Conference on Web Search and Data Mining, pp. 601–610 (2017)Google Scholar
  13. 13.
    Ribeiro, P., Silva, F.: G-tries: an efficient data structure for discovering network motifs. In: Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 1559–1566 (2010)Google Scholar
  14. 14.
    Shahrivari, S., Jalili, S.: Fast parallel all-subgraph enumeration using multicore machines. Sci. Program. 2015, 6 (2015)Google Scholar
  15. 15.
    Shellman, E.R., Burant, C.F., Schnell, S.: Network motifs provide signatures that characterize metabolism. Mol. BioSyst. 9(3), 352–360 (2013)Google Scholar
  16. 16.
    Takes, F.W., Kosters, W.A., Witte, B., Heemskerk, E.M.: Multiplex network motifs as building blocks of corporate networks. Appl. Netw. Sci. 3(1), 39 (2018)Google Scholar
  17. 17.
    Viswanath, B., Mislove, A., Cha, M., Gummadi, K.P.: On the evolution of user interaction in Facebook. In: Proceedings of the 2nd ACM Workshop on Social Networks, pp. 37–42 (2009)Google Scholar
  18. 18.
    Wernicke, S.: A faster algorithm for detecting network motifs. In: Proceedings of the 5th International Workshop on Algorithms in Bioinformatics, pp. 165–177. Springer (2005)Google Scholar
  19. 19.
    Wernicke, S.: Efficient detection of network motifs. IEEE/ACM Trans. Comput. Biol. Bioinform. 3(4), 347–359 (2006)Google Scholar
  20. 20.
    Wernicke, S., Rasche, F.: FANMOD: a tool for fast network motif detection. Bioinformatics 22(9), 1152–1153 (2006)Google Scholar
  21. 21.
    Yeger-Lotem, E., Kashtan, N., Itzkovitz, S., Milo, R., Pinter, R.Y., Alon, U., Margalit, H.: Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. Proc. Natl. Acad. Sci. 101(16), 5934–5939 (2004)Google Scholar
  22. 22.
    Zhao, Q., Tian, Y., He, Q., Oliver, N., Jin, R., Lee, W.C.: Communication motifs: a tool to characterize social communications. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, pp. 1645–1648 (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hanjo D. Boekhout
    • 1
  • Walter A. Kosters
    • 1
  • Frank W. Takes
    • 1
  1. 1.Department of Computer Science (LIACS)Leiden UniversityLeidenThe Netherlands

Personalised recommendations