Advertisement

Ensemble Clustering for Graphs

  • Valérie Poulin
  • François Théberge
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 812)

Abstract

We propose a new ensemble clustering algorithm for graphs (ECG) which is based on the Louvain algorithm and the concept of consensus clustering. We validate our approach by replicating a recently published study comparing graph clustering algorithms over artificial networks, showing that ECG outperforms the leading algorithms from that study. We also illustrate how the ensemble obtained with ECG can be used to quantify the presence of community structure in the graph.

Keywords

Graph Clustering Consensus 

References

  1. 1.
    Albatineh, A.N., Niewiadomska-Bugaj, M., Mihalko, D.: On similarity indices and correction for chance agreement. J. Classif. 23(2), 301–313 (2006)Google Scholar
  2. 2.
    Berry, J., Hendrickson, B., LaViolette, R.A., Phillips, C.A.: Tolerating the community detection resolution limit with edge weighting. Phys. Rev. E 83 (2009)Google Scholar
  3. 3.
    Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. 08(P10008) (2008)Google Scholar
  4. 4.
    Breiman, L.: Random forests. J. Mach. Learn. 45(1), 5–32 (2001)Google Scholar
  5. 5.
    Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6), 066,111 (2004)Google Scholar
  6. 6.
    Csardi, G., Nepusz, T.: The igraph software package for complex network research. Int. J. Complex Syst. (2006). http://igraph.org
  7. 7.
    Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. 104(1), 36–41 (2007)Google Scholar
  8. 8.
    Fortunato, S., Hric, D.: Community detection in networks: a user guide. Phys. Rep. 659, 1–44 (2016)Google Scholar
  9. 9.
    Fred, A.L., Jain, A.K.: Combining multiple clustering using evidence accumulation. IEEE Trans. Pattern Anal. Mach. Intell. 27(6), 835–850 (2005)Google Scholar
  10. 10.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Sys. Sci. 55(119) (1997).  https://doi.org/10.1006/jcss.1997.1504
  11. 11.
    Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)Google Scholar
  12. 12.
    Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 193–218 (1985)Google Scholar
  13. 13.
    Lancichinetti, A., Fortunato, S.: Community detection algorithms: a comparative analysis. Phys. Rev. E 80, 056,117 (2009)Google Scholar
  14. 14.
    Lancichinetti, A., Fortunato, S.: Consensus clustering in complex networks. Nat. Sci. Rep. 2, 336 (2012)Google Scholar
  15. 15.
    Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(046110) (2008)Google Scholar
  16. 16.
    Li, T., Ogihara, M., Ma, S.: On combining multiple clusterings: an overview and a new perspective. Appl. Intell. 33(2), 207–219 (2010).  https://doi.org/10.1007/s10489-009-0160-4Google Scholar
  17. 17.
    Meilă, M.: Comparing clusterings—an information based distance. J. Multiv. Anal. 98(5) (2007)Google Scholar
  18. 18.
    Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)Google Scholar
  19. 19.
    Newman, M.E.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 036,104 (2006)Google Scholar
  20. 20.
    Orman, G.K., Labatut, V.: A comparison of community detection algorithms on artificial networks. In: International Conference on Discovery Science, pp. 242–256. Springer (2009)Google Scholar
  21. 21.
    Orman, G.K., Labatut, V., Cherifi, H.: Comparative evaluation of community detection algorithms: a topological approach. J. Stat. Mech. (2012).  https://doi.org/10.1088/1742-5468/2012/08/P08001
  22. 22.
    Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)Google Scholar
  23. 23.
    Pons, P., Latapy, M.: Computing communities in large networks using random walks. Comput. Inf. Sci. ISCIS 284–293 (2005)Google Scholar
  24. 24.
    Poulin, V., Théberge, F.: Adjusted graph-aware rand index for comparing graph partitions (2018). https://codeocean.com/2018/07/01/adjusted-graph-aware-rand-index-for-comparing-graph-partitions/code
  25. 25.
    Poulin, V., Théberge, F.: Comparing graph clusterings: set partition measures vs. graph-aware measures (2018). arXiv:1806.11494
  26. 26.
    Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76(3), 036,106 (2007)Google Scholar
  27. 27.
    Reichardt, J., Bornholdt, S.: Statistical mechanics of community detection. Phys. Rev. E 74(1), 016,110 (2006)Google Scholar
  28. 28.
    Romano, S., Vinh, N.X., Bailey, J., Verspoor, K.: Adjusting for chance clustering comparison measures. J. Mach. Learn. Res. 17(1), 4635–4666 (2016)Google Scholar
  29. 29.
    Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. PNAS 105(4), 1118–1123 (2007)Google Scholar
  30. 30.
    Strehl, A., Ghosh, J.: Cluster ensembles: a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 583–617 (2002)Google Scholar
  31. 31.
    Théberge, F., Poulin, V.: Ensemble clustering for graphs (2018). https://codeocean.com/2018/09/11/ensemble-clustering-for-graphs/code
  32. 32.
    Topchy, A., Jain, A.K., Punch, W.: Clustering ensembles: models of consensus and weak partitions. IEEE Trans. Pattern Anal. Mach. Intell. 27(12), 1866–1881 (2005)Google Scholar
  33. 33.
    Vega-Pons, S., Ruiz-Shulcloper, J.: A survey of clustering ensemble algorithms. Int. J. Pattern Recognit. Artif. Intell. 25(3), 337–372 (2011)Google Scholar
  34. 34.
    Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: is a correction for chance necessary? In: Proceedings of the 26th International Conference on Machine Learning (2009)Google Scholar
  35. 35.
    Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J. Mach. Learn. Res. 11, 2837–2854 (2010)Google Scholar
  36. 36.
    Yang, Z., Algesheimer, R., Tessone, C.J.: A comparative analysis of community detection algorithms on artificial networks. Nat. Sci. Rep. 6, 30,750 (2016)Google Scholar

Copyright information

© Crown 2019

Authors and Affiliations

  1. 1.Tutte Institute for Mathematics and ComputingOttawaCanada

Personalised recommendations