Advertisement

Preparation and Characterization of Antibacterial Sustainable Nanocomposites

  • T. C. MokhenaEmail author
  • M. J. Mochane
  • T. H. Mokhothu
  • A. MtibeEmail author
  • C. A. Tshifularo
  • T. S. Motsoeneng
Chapter

Abstract

Nanoparticles show high toxicity towards various pathogenic microbes, however, the control over their release and/or release rate has been the major subject in research. Over the past decade’s research has escalated on the use of the polymeric material as the host to hold the nanoparticles in order to control their release rate. Biopolymers, owing to their unique properties such as biodegradability, renewability, and recyclability have been used as host matrices for various nanoparticles. Different processing techniques such as melt compounding and solution casting were employed to fabricate polymer nanocomposites. In this chapter, we reviewed the preparation and characterization of sustainable antimicrobial nanocomposites, the strategies to enhance their antibacterial activity as well as future prospects of these interesting materials. We also highlight the preparation of different antibacterial nanoparticles and recent developments.

Keywords

Biopolymer Nanocomposites Nanoparticles Preparation Characterization 

References

  1. 1.
    Abdel Rahim K, Mahmoud SY, Ali AM et al (2017) Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J Biol Sci.  https://doi.org/10.1016/j.sjbs.2016.02.025CrossRefGoogle Scholar
  2. 2.
    Agarwal H, Venkat Kumar S, Rajeshkumar S (2017) A review on green synthesis of zinc oxide nanoparticles—An eco-friendly approach. Resour Technol.  https://doi.org/10.1016/j.reffit.2017.03.002CrossRefGoogle Scholar
  3. 3.
    An X, Ma H, Liu B, Wang J (2013) Graphene oxide reinforced polylactic acid/polyurethane antibacterial composites. J Nanomater.  https://doi.org/10.1155/2013/373414CrossRefGoogle Scholar
  4. 4.
    Ana MD, Angel LD (2014) ZnO-reinforced poly (3-hydroxybutyrate- co -3-hydroxyvalerate) bionanocomposites with antimicrobial function for food packaging. J Mol Sci, Int.  https://doi.org/10.3390/ijms150610950CrossRefGoogle Scholar
  5. 5.
    Agustin YE, Padmawijara (2017) Effect of glycerol and zinc oxide addition on antibacterial activity of biodegradable bioplastics from chitosan-kepok banana peel starch.  https://doi.org/10.1088/1757-899x/223/1/012046CrossRefGoogle Scholar
  6. 6.
    Augustine R, Malik HN, Singhal DK, et al (2014) Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. J Polym Res.  https://doi.org/10.1007/s10965-013-0347-6
  7. 7.
    Baheri B, Shahverdi M, Rezakazemi M et al (2015) Performance of PVA/NaA Mixed matrix membrane for removal of water from ethylene glycol solutions by pervaporation. Chem Eng Commun 202:316–321.  https://doi.org/10.1080/00986445.2013.841149CrossRefGoogle Scholar
  8. 8.
    Bayer IS (2017) Thermomechanical properties of polylactic review for biomedical applications.  https://doi.org/10.3390/ma10070748CrossRefGoogle Scholar
  9. 9.
    Botlhoko OJ, Ramontja J, Ray SS (2017) Thermally shocked graphene oxide-containing biocomposite for thermal management applications. RSC Adv 7:33751–33756.  https://doi.org/10.1039/c7ra05421aCrossRefGoogle Scholar
  10. 10.
    Castro-Mayorga J, Fabra M, Cabedo L, Lagaron J (2016) On the use of the electrospinning coating technique to produce antimicrobial polyhydroxyalkanoate materials containing in situ-stabilized silver nanoparticles. Nanomaterials.  https://doi.org/10.3390/nano7010004CrossRefGoogle Scholar
  11. 11.
    Castro Mayorga JL, Fabra Rovira MJ, Cabedo Mas L et al (2018) Antimicrobial nanocomposites and electrospun coatings based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and copper oxide nanoparticles for active packaging and coating applications. J Appl Polym Sci.  https://doi.org/10.1002/app.45673CrossRefGoogle Scholar
  12. 12.
    Chandra S, Kumar A, Tomar PK (2014) Synthesis and characterization of copper nanoparticles by reducing agent. J Saudi Chem Soc 18:149–153.  https://doi.org/10.1016/j.jscs.2011.06.009CrossRefGoogle Scholar
  13. 13.
    Chen H, Wang B, Gao D et al (2013) Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria. 2735–2746.  https://doi.org/10.1002/smll.201202792CrossRefGoogle Scholar
  14. 14.
    Chu Z, Zhao T, Li L et al (2017) Characterization of antimicrobial poly (lactic acid)/nano-composite films with silver and zinc oxide nanoparticles. Materials (Basel).  https://doi.org/10.3390/ma10060659CrossRefGoogle Scholar
  15. 15.
    Chung IM, Rahuman AA, Marimuthu S et al (2017) Green synthesis of copper nanoparticles using Eclipta prostrata leaves extract and their antioxidant and cytotoxic activities. 18–24.  https://doi.org/10.3892/etm.2017.4466
  16. 16.
    De Azeredo HMC (2009) Nanocomposites for food packaging applications. Food Res. Int.  https://doi.org/10.1016/j.foodres.2009.03.019CrossRefGoogle Scholar
  17. 17.
    De Azeredo HMC (2013) Antimicrobial nanostructures in food packaging. Trends Food Sci Technol  https://doi.org/10.1016/j.tifs.2012.11.006CrossRefGoogle Scholar
  18. 18.
    Din MI, Arshad F, Hussain Z, Mukhtar M (2017) Green adeptness in the synthesis and stabilization of copper nanoparticles : catalytic, antibacterial, cytotoxicity, and antioxidant activities.  https://doi.org/10.1186/s11671-017-2399-8
  19. 19.
    El-ghany NAA (2017) Antimicrobial activity of new carboxymethyl chitosan–carbon nanotube biocomposites and their swell ability in different pH media. J Carbohydr Chem 0:1–14.  https://doi.org/10.1080/07328303.2017.1353610CrossRefGoogle Scholar
  20. 20.
    Espinoza-go H, Alonso-nu G, Sua J (2017) A green synthesis of copper nanoparticles using native cyclodextrins as stabilizing agents. J Saudi Chem Soc 341–348.  https://doi.org/10.1016/j.jscs.2016.10.005CrossRefGoogle Scholar
  21. 21.
    Geetha MS, Nagabhushana H, Shivananjaiah HN (2016) Green mediated synthesis and characterization of ZnO nanoparticles using Euphorbia Jatropa latex as reducing agent. J Sci Adv Mater Devices.  https://doi.org/10.1016/j.jsamd.2016.06.015Google Scholar
  22. 22.
    Gopinath V, Priyadarshini S, Loke MF et al (2017) Biogenic synthesis, characterization of antibacterial silver nanoparticles and its cell cytotoxicity. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2015.11.011CrossRefGoogle Scholar
  23. 23.
    Gopiraman M, Jatoi AW, Hiromichi S et al (2016) Silver coated anionic cellulose nanofiber composites for an efficient antimicrobial activity. Carbohydr Polym.  https://doi.org/10.1016/j.carbpol.2016.04.084CrossRefGoogle Scholar
  24. 24.
    Gunalan S, Sivaraj R, Rajendran V (2012) Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog Nat Sci Mater Int.  https://doi.org/10.1016/j.pnsc.2012.11.015CrossRefGoogle Scholar
  25. 25.
    Hasan SS, Singh S, Parikh RY, Dharne MS (2008) Bacterial synthesis of copper/copper oxide nanoparticles bacterial synthesis of copper/copper oxide nanoparticles.  https://doi.org/10.1166/jnn.2008.095CrossRefGoogle Scholar
  26. 26.
    Huang KS, Yang CH, Huang SL et al (2016) Recent advances in antimicrobial polymers: a mini-review. Int J Mol Sci 17(9):1578.  https://doi.org/10.3390/ijms17091578CrossRefGoogle Scholar
  27. 27.
    José De Andrade C, Maria De Andrade L, Mendes MA, Oller Do Nascimento CA (2017) An overview on the production of microbial copper nanoparticles by bacteria, fungi and algae. Glob J Res EngGoogle Scholar
  28. 28.
    Judith P, Espitia P (2012) Zinc oxide nanoparticles : synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 1447–1464.  https://doi.org/10.1007/s11947-012-0797-6CrossRefGoogle Scholar
  29. 29.
    Kang S, Pinault M, Pfefferle LD et al (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23(17):8670–8673.  https://doi.org/10.1021/la701067rCrossRefGoogle Scholar
  30. 30.
    Khan A, Rashid A, Younas R, Chong R (2015) A chemical reduction approach to the synthesis of copper nanoparticles. Int Nano Lett.  https://doi.org/10.1007/s40089-015-0163-6CrossRefGoogle Scholar
  31. 31.
    Li SM, Jia N, Ma MG, et al (2011) Cellulose-silver nanocomposites: Microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property. Carbohydr Polym.  https://doi.org/10.1016/j.carbpol.2011.04.060CrossRefGoogle Scholar
  32. 32.
    Li W, Zhang C, Chi H et al (2017) Development of antimicrobial packaging film made from poly(lactic acid) incorporating titanium dioxide and silver nanoparticles. Molecules.  https://doi.org/10.3390/molecules22071170CrossRefGoogle Scholar
  33. 33.
    Li X, Xiao Y, Bergeret A, et al (2014) Preparation of polylactide/graphene composites from liquid-phase exfoliated graphite sheets.  https://doi.org/10.1002/pc.22673CrossRefGoogle Scholar
  34. 34.
    Ma P, Jiang L, Yu M et al (2016) Green antibacterial nanocomposites from Poly (lactide)/Poly (butylene adipate -co-terephthalate)/nanocrystal cellulose-silver nanohybridsGoogle Scholar
  35. 35.
    Martynková GS, Valášková M (2014) Antimicrobial nanocomposites based on natural modified materials: a review of carbons and clays. J Nanosci Nanotechnol.  https://doi.org/10.1166/jnn.2014.8903CrossRefGoogle Scholar
  36. 36.
    Mary G, Bajpai SK, Chand N (2009) Copper (II) Ions and copper nanoparticles-loaded chemically modified cotton cellulose fibers with fair antibacterial properties.  https://doi.org/10.1002/app
  37. 37.
    Matinise N, Fuku XG, Kaviyarasu K et al (2017) Applied Surface Science ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation. Appl Surf Sci 406:339–347.  https://doi.org/10.1016/j.apsusc.2017.01.219CrossRefGoogle Scholar
  38. 38.
    Mendoza G, Regiel-Futyra A, Andreu V et al (2017) Bactericidal effect of gold-chitosan nanocomposites in coculture models of pathogenic bacteria and human macrophages. ACS Appl Mater Interfaces 9:17693–17701.  https://doi.org/10.1021/acsami.6b15123CrossRefGoogle Scholar
  39. 39.
    Mochane MJ, Luyt AS (2015) Synergistic effect of expanded graphite, diammonium phosphate and Cloisite 15A on flame retardant properties of EVA and EVA/wax phase-change blends. J Mater Sci 50:3485–3494.  https://doi.org/10.1007/s10853-015-8909-0CrossRefGoogle Scholar
  40. 40.
    Mochane MJ, Luyt AS (2015) The effect of expanded graphite on the thermal stability, latent heat, and flammability properties of EVA/wax phase change blends. Polym Eng Sci 55:1255–1262.  https://doi.org/10.1002/pen.24063CrossRefGoogle Scholar
  41. 41.
    Mokhena TC, Jacobs NV, Luyt AS (2018) Nanofibrous alginate membrane coated with cellulose nanowhiskers for water purification. Cellulose 25.  https://doi.org/10.1007/s10570-017-1541-1CrossRefGoogle Scholar
  42. 42.
    Mokhena TC, Jacobs V, Luyt AS (2015) A review on electrospun bio-based polymers for water treatment. Express Polym Lett 9.  https://doi.org/10.3144/expresspolymlett.2015.79CrossRefGoogle Scholar
  43. 43.
    Mokhena TC, Luyt AS (2017) Development of multifunctional nano/ultrafiltration membrane based on a chitosan thin film on alginate electrospun nanofibres. J Clean Prod 156:.  https://doi.org/10.1016/j.jclepro.2017.04.073CrossRefGoogle Scholar
  44. 44.
    Mokhena TC, Luyt AS (2017) Electrospun alginate nanofibres impregnated with silver nanoparticles: preparation, morphology and antibacterial properties. Carbohydr Polym 165.  https://doi.org/10.1016/j.carbpol.2017.02.068CrossRefGoogle Scholar
  45. 45.
    Mondal D, Bhowmick B, Mollick MMR et al (2014) Antimicrobial activity and biodegradation behavior of poly(butylene adipate-co-terephthalate)/clay nanocomposites. J Appl Polym Sci.  https://doi.org/10.1002/app.40079Google Scholar
  46. 46.
    Palza H (2015) Antimicrobial polymers with metal nanoparticles. Int J Mol, SciCrossRefGoogle Scholar
  47. 47.
    Palza H, Quijada R, Delgado K (2015) Antimicrobial polymer composites with copper micro- and nanoparticles: effect of particle size and polymer matrix. J Bioact Compat Polym.  https://doi.org/10.1177/0883911515578870CrossRefGoogle Scholar
  48. 48.
    Phogat N, Khan SA, Shankar S, et al (2016) Fate of inorganic nanoparticles in agriculture. Adv. Mater. LettGoogle Scholar
  49. 49.
    Pinto RJB, Marques PAAP, Neto CP, et al (2009) Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomater.  https://doi.org/10.1016/j.actbio.2009.02.003CrossRefGoogle Scholar
  50. 50.
    Prabhu YT, Rao KV, Sai VS, Pavani T (2017) ORIGINAL ARTICLE A facile biosynthesis of copper nanoparticles: a micro-structural and antibacterial activity investigation. J Saudi Chem Soc 21:180–185.  https://doi.org/10.1016/j.jscs.2015.04.002CrossRefGoogle Scholar
  51. 51.
    Rapacz-Kmita A, Pierchała MK, Tomas-Trybuś A et al (2017) The wettability, mechanical and antimicrobial properties of polylactide/montmorillonite nanocomposite films. Acta Bioeng Biomech.  https://doi.org/10.5277//abb-00820-2017-02
  52. 52.
    Review CNA, Gonçalves C (2017) Poly (lactic acid) composites containing. 1–37.  https://doi.org/10.3390/polym9070269CrossRefGoogle Scholar
  53. 53.
    Rezakazemi M, Dashti A, Riasat Harami H et al (2018) Fouling-resistant membranes for water reuse. Environ Chem Lett 1–49.  https://doi.org/10.1007/s10311-018-0717-8CrossRefGoogle Scholar
  54. 54.
    Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati MM et al (2014) State-of-the-art membrane based CO < inf > 2</inf > separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39:817–861.  https://doi.org/10.1016/j.progpolymsci.2014.01.003CrossRefGoogle Scholar
  55. 55.
    Rezakazemi M, Khajeh A, Mesbah M (2017) Membrane filtration of wastewater from gas and oil production. Environ Chem Lett 1–22.  https://doi.org/10.1007/s10311-017-0693-4CrossRefGoogle Scholar
  56. 56.
    Rezakazemi M, Mohammadi T (2013) Gas sorption in H < inf > 2</inf > -selective mixed matrix membranes: experimental and neural network modeling. Int J Hydrogen Energy 38:14035–14041.  https://doi.org/10.1016/j.ijhydene.2013.08.062CrossRefGoogle Scholar
  57. 57.
    Rezakazemi M, Razavi S, Mohammadi T, Nazari AG (2011) Simulation and determination of optimum conditions of pervaporative dehydration of isopropanol process using synthesized PVA-APTEOS/TEOS nanocomposite membranes by means of expert systems. J Memb Sci 379:224–232.  https://doi.org/10.1016/j.memsci.2011.05.070CrossRefGoogle Scholar
  58. 58.
    Rezakazemi M, Sadrzadeh M, Matsuura T (2018) Thermally stable polymers for advanced high-performance gas separation membranes. Prog Energy Combust Sci 66:1–41.  https://doi.org/10.1016/j.pecs.2017.11.002CrossRefGoogle Scholar
  59. 59.
    Rezakazemi M, Sadrzadeh M, Mohammadi T (2017b) Separation via pervaporation techniques through polymeric membranesGoogle Scholar
  60. 60.
    Rezakazemi M, Sadrzadeh M, Mohammadi T, Matsuura T (2017) Methods for the preparation of organic-inorganic nanocomposite polymer electrolyte membranes for fuel cellsGoogle Scholar
  61. 61.
    Rezakazemi M, Shahidi K, Mohammadi T (2012) Sorption properties of hydrogen-selective PDMS/zeolite 4A mixed matrix membrane. Int J Hydrogen Energy 37:17275–17284.  https://doi.org/10.1016/j.ijhydene.2012.08.109CrossRefGoogle Scholar
  62. 62.
    Rezakazemi M, Shahidi K, Mohammadi T (2012) Hydrogen separation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matrix membranes. Int J Hydrogen Energy 37:14576–14589.  https://doi.org/10.1016/j.ijhydene.2012.06.104CrossRefGoogle Scholar
  63. 63.
    Rezakazemi M, Shahidi K, Mohammadi T (2015) Synthetic PDMS composite membranes for pervaporation dehydration of ethanol. Desalin Water Treat 54:1542–1549.  https://doi.org/10.1080/19443994.2014.887036CrossRefGoogle Scholar
  64. 64.
    Rezakazemi M, Shahverdi M, Shirazian S et al (2011) CFD simulation of water removal from water/ethylene glycol mixtures by pervaporation. Chem Eng J 168:60–67.  https://doi.org/10.1016/j.cej.2010.12.034CrossRefGoogle Scholar
  65. 65.
    Rezakazemi M, Vatani A, Mohammadi T (2015) Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes. RSC Adv 5:82460–82470.  https://doi.org/10.1039/c5ra13609aCrossRefGoogle Scholar
  66. 66.
    Rezakazemi M, Vatani A, Mohammadi T (2016) Synthesis and gas transport properties of crosslinked poly(dimethylsiloxane) nanocomposite membranes using octatrimethylsiloxy POSS nanoparticles. J Nat Gas Sci Eng 30:10–18.  https://doi.org/10.1016/j.jngse.2016.01.033CrossRefGoogle Scholar
  67. 67.
    Rhim J-W, Hong S-K, Park H-M, N.g PKW (2006) Preparation and Characterization of Chitosan-Based Nanocomposite Films with Antimicrobial Activity. J. Agric. Food Chem. 54, 16, 5814-5822.  https://doi.org/10.1021/jf060658hCrossRefGoogle Scholar
  68. 68.
    Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci.  https://doi.org/10.1016/j.progpolymsci.2013.05.008CrossRefGoogle Scholar
  69. 69.
    Rostamizadeh M, Rezakazemi M, Shahidi K, Mohammadi T (2013) Gas permeation through H2-selective mixed matrix membranes: experimental and neural network modeling. Int J Hydrogen Energy 38:1128–1135.  https://doi.org/10.1016/j.ijhydene.2012.10.069CrossRefGoogle Scholar
  70. 70.
    Sadeghi A, Nazem H, Rezakazemi M, Shirazian S (2018) Predictive construction of phase diagram of ternary solutions containing polymer/solvent/nonsolvent using modified Flory-Huggins model. J Mol Liq 263:282–287.  https://doi.org/10.1016/j.molliq.2018.05.015CrossRefGoogle Scholar
  71. 71.
    Sadrzadeh M, Rezakazemi M, Mohammadi T (2017) Fundamentals and measurement techniques for gas transport in polymersGoogle Scholar
  72. 72.
    Laudenslager MJ, Schiffman JD, Schauer CL (2008) Carboxymethyl chitosan as a matrix material for platinum, gold, and silver nanoparticles. 2682–2685.  https://doi.org/10.1021/bm800835eCrossRefGoogle Scholar
  73. 73.
    Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36:638–670.  https://doi.org/10.1016/j.progpolymsci.2010.11.003CrossRefGoogle Scholar
  74. 74.
    Satyvaldiev AS, Zhasnakunov ZK, Omurzak E, Doolotkeldieva TD, Bobusheva ST, Orozmatova GT, Kelgenbaeva Z (2018) Copper nanoparticles : synthesis and biological activity.  https://doi.org/10.1088/1757-899x/302/1/012075CrossRefGoogle Scholar
  75. 75.
    Shahverdi M, Baheri B, Rezakazemi M et al (2013) Pervaporation study of ethylene glycol dehydration through synthesized (PVA-4A)/polypropylene mixed matrix composite membranes. Polym Eng Sci 53:1487–1493.  https://doi.org/10.1002/pen.23406CrossRefGoogle Scholar
  76. 76.
    Shankar S, Rhim J (2016) LWT—food science and technology tocopherol-mediated synthesis of silver nanoparticles and preparation of antimicrobial pbat/silver nanoparticles composite films. LWT - Food Sci Technol 72:149–156.  https://doi.org/10.1016/j.lwt.2016.04.054CrossRefGoogle Scholar
  77. 77.
    Shankar S, Wang LF, Rhim JW (2016) Preparations and characterization of alginate/silver composite films: effect of types of silver particles. Carbohydr Polym.  https://doi.org/10.1016/j.carbpol.2016.03.026CrossRefGoogle Scholar
  78. 78.
    Shih CM, Shieh YT, Twu YK (2009) Preparation of gold nanopowders and nanoparticles using chitosan suspensions. Carbohydr Polym 78:309–315.  https://doi.org/10.1016/j.carbpol.2009.04.008CrossRefGoogle Scholar
  79. 79.
    Shittu KO, Bankole MT, Abdulkareem AS et al (2017) Application of gold nanoparticles for improved drug efficiencyGoogle Scholar
  80. 80.
    Sothornvit R, Rhim JW, Hong SI (2009) Effect of nano-clay type on the physical and antimicrobial properties of whey protein isolate/clay composite films. J Food Eng.  https://doi.org/10.1016/j.jfoodeng.2008.09.026CrossRefGoogle Scholar
  81. 81.
    Tsou CH, Yao WH, Lu YC, et al (2017) Antibacterial property and cytotoxicity of a poly(lactic acid)/nanosilver-doped multiwall carbon nanotube nanocomposite. Polymers (Basel) 9.  https://doi.org/10.3390/polym9030100CrossRefGoogle Scholar
  82. 82.
    Vasile C, Râpă M, Ștefan M et al (2017) New PLA/ ZnO: Cu/ Ag bionanocomposites for food packaging. 11:531–544Google Scholar
  83. 83.
    Venkatesan R, Rajeswari N (2017) TiO2 nanoparticles/poly(butylene adipate‐co‐terephthalate) bionanocomposite films for packaging applications.  https://doi.org/10.1002/pat.4042CrossRefGoogle Scholar
  84. 84.
    Venkatesan R, Rajeswari N, Tamilselvi A (2018) Antimicrobial, mechanical, barrier, and thermal properties of bio-based poly (butylene adipate-co-terephthalate) (PBAT)/Ag2O nanocomposite films for packaging application.  https://doi.org/10.1002/pat.4089CrossRefGoogle Scholar
  85. 85.
    Venkatesan R, Rajeswari N (2016) ZnO/PBAT nanocomposite films : investigation on the mechanical and biological activity for food packaging.  https://doi.org/10.1002/pat.3847CrossRefGoogle Scholar
  86. 86.
    Vimbela GV, Ngo SM, Fraze C, Yang L, David A Stout DA (2017) Antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomedicine 12:3941–3965.  https://doi.org/10.2147/ijn.s134526CrossRefGoogle Scholar
  87. 87.
    Vivekanandhan S, Christensen L, Misra M, Kumar Mohanty A (2012) Green process for impregnation of silver nanoparticles into microcrystalline cellulose and their antimicrobial bionanocomposite films. J Biomater Nanobiotechnol.  https://doi.org/10.4236/jbnb.2012.33035CrossRefGoogle Scholar
  88. 88.
    Wang X, Du Y, Luo J, et al (2009) A novel biopolymer/rectorite nanocomposite with antimicrobial activity. Carbohydr Polym.  https://doi.org/10.1016/j.carbpol.2009.01.015CrossRefGoogle Scholar
  89. 89.
    Wu CS (2009) Antibacterial and static dissipating composites of poly(butylene adipate-co-terephthalate) and multi-walled carbon nanotubes. Carbon N Y 47:3091–3098.  https://doi.org/10.1016/j.carbon.2009.07.023CrossRefGoogle Scholar
  90. 90.
    Wu D, Cheng Y, Feng S, et al (2013) Crystallization behavior of polylactide/graphene composites crystallization behavior of polylactide/graphene composites.  https://doi.org/10.1021/ie4004199CrossRefGoogle Scholar
  91. 91.
    Yan X, Li F, Di Hu K et al (2017) Nacre-mimic reinforced Ag@reduced graphene oxide-sodium alginate composite film for wound healing. Sci Rep.  https://doi.org/10.1038/s41598-017-14191-5

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • T. C. Mokhena
    • 1
    • 2
    Email author
  • M. J. Mochane
    • 3
  • T. H. Mokhothu
    • 4
  • A. Mtibe
    • 1
    Email author
  • C. A. Tshifularo
    • 1
    • 2
  • T. S. Motsoeneng
    • 5
  1. 1.CSIR Materials Science and Manufacturing, Polymers and Composites Competence Area, Nonwovens and Composites Research GroupPort ElizabethSouth Africa
  2. 2.Department of ChemistryNelson Mandela UniversityPort ElizabethSouth Africa
  3. 3.Department of Life SciencesCentral University of TechnologyBloemfonteinSouth Africa
  4. 4.Department of ChemistryDurban University of TechnologyDurbanSouth Africa
  5. 5.Chemistry DepartmentUniversity of South Africa (UNISA)RoodepoortSouth Africa

Personalised recommendations