Advertisement

Mechanical, Thermal and Viscoelastic Properties of Polymer Composites Reinforced with Various Nanomaterials

  • T. H. Mokhothu
  • A. MtibeEmail author
  • T. C. MokhenaEmail author
  • M. J. Mochane
  • O. Ofosu
  • S. Muniyasamy
  • C. A. Tshifularo
  • T. S. Motsoeneng
Chapter

Abstract

In recent years, nanomaterials played a key role in developing novel polymer nanocomposites with multifunctional properties. Nanomaterials that will be reviewed in this study are nanoclays, carbonaceous (carbon nanotubes and graphene) and nanocellulose. This chapter reviews the effects of nanomaterials and nanomaterials hybrid on mechanical, thermal, rheological and dynamic mechanical properties of polymer nanocomposites. In the last decades, biobased and biodegradable polymers (biopolymers) reinforced with nanomaterials have been a research hotspot. However, this chapter also reviews the recent developments of polymer nanocomposites from biopolymers and nanomaterials.

Keywords

Nanocomposites Mechanical properties Thermal properties Dynamic mechanical properties Rheological properties Biopolymers 

References

  1. 1.
    Abdellaoui H, Bensalah H, Raji M, Rodrigue D, Bouhfid R, Qaiss AK (2017) Laminated epoxy biocomposites based on clay and jute fibers. J Bionic Eng 14:379–389.  https://doi.org/10.1016/S1672-6529(16)60406-7CrossRefGoogle Scholar
  2. 2.
    Abdollahi R, Taghizadeh MT, Savani S (2018) Thermal and mechanical properties of graphene oxide nanocomposite hydrogel based on poly (acrylic acid) grafted onto amylose. Polym Degrad Stab 147:151–158.  https://doi.org/10.1016/j.polymdegradstab.2017.11.022CrossRefGoogle Scholar
  3. 3.
    Ahmad EEM, Luyt AS, Djoković V (2013) Thermal and dynamic mechanical properties of bio-based poly(furfuryl alcohol)/sisal whiskers nanocomposites. Polym Bull 70:1265–1276.  https://doi.org/10.1007/s00289-012-0847-2CrossRefGoogle Scholar
  4. 4.
    Al-saleh MH (2015) Electrically conductive carbon nanotube/polypropylene nanocomposite with improved mechanical properties. JMADE 85:76–81.  https://doi.org/10.1016/j.matdes.2015.06.162CrossRefGoogle Scholar
  5. 5.
    Alboofetileh M, Rezaei M, Hosseini H, Abdollahi M (2013) Effect of montmorillonite clay and biopolymer concentration on the physical and mechanical properties of alginate nanocomposite films. J Food Eng 117:26–33.  https://doi.org/10.1016/j.jfoodeng.2013.01.042CrossRefGoogle Scholar
  6. 6.
    Alcântara ACS, Darder M, Aranda P, Ruiz-hitzky E (2014) Polysaccharide–fibrous clay bionanocomposites. Appl Clay Sci 96:2–8.  https://doi.org/10.1016/j.clay.2014.02.018CrossRefGoogle Scholar
  7. 7.
    Ali FB, Mohan R (2010) Thermal, mechanical, and rheological properties of biodegradable polybutylene succinate/carbon nanotubes nanocomposites. 1–6.  https://doi.org/10.1002/pc.20913
  8. 8.
    An JE, Jeon GW, Jeong YG (2012) Preparation and properties of polypropylene nanocomposites reinforced with exfoliated graphene. Fibers Polym 13:507–514.  https://doi.org/10.1007/s12221-012-0507-zCrossRefGoogle Scholar
  9. 9.
    Arrakhiz FZ, Benmoussa K, Bouhfid R, Qaiss A (2013) Pine cone fiber/clay hybrid composite: mechanical and thermal properties. Mater Des 50:376–381.  https://doi.org/10.1016/j.matdes.2013.03.033CrossRefGoogle Scholar
  10. 10.
    Azevedo VM, Silva EK, Pereira CFG, Costa JMG, Borges SV (2015) Whey protein isolate biodegradable films: Influence of the citric acid and montmorillonite clay nanoparticles on the physical properties. Food Hydrocoll 43:252–258.  https://doi.org/10.1016/j.foodhyd.2014.05.027CrossRefGoogle Scholar
  11. 11.
    Ayana B, Suin S, Khatua BB (2014) Highly exfoliated eco-friendly thermoplastic starch (TPS)/ poly (lactic acid)(PLA)/clay nanocomposites using unmodified nanoclay. Carbohydr Polym 110:430–439.  https://doi.org/10.1016/j.carbpol.2014.04.024CrossRefGoogle Scholar
  12. 12.
    Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442.  https://doi.org/10.1016/j.matdes.2012.11.025CrossRefGoogle Scholar
  13. 13.
    Babaee M, Jonoobi M, Hamzeh Y, Ashori A (2015) Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers. Carbohydr Polym 132:1–8.  https://doi.org/10.1016/j.carbpol.2015.06.043CrossRefGoogle Scholar
  14. 14.
    Baheri B, Shahverdi M, Rezakazemi M, Motaee E, Mohammadi T (2015) Performance of PVA/NaA mixed matrix membrane for removal of water from ethylene glycol solutions by pervaporation. Chem Eng Commun 202:316–321.  https://doi.org/10.1080/00986445.2013.841149CrossRefGoogle Scholar
  15. 15.
    Baniasadi H, Ramazani A, Javan Nikkhah S (2010) Investigation of in situ prepared polypropylene/clay nanocomposites properties and comparing to melt blending method. Mater Des 31:76–84.  https://doi.org/10.1016/j.matdes.2009.07.014CrossRefGoogle Scholar
  16. 16.
    Běhálek L, Maršálková M, Lenfeld P, et al (2013) Study of crystallization of polylactic acid composites and nanocomposites with natural fibres by DSC method. 1–6Google Scholar
  17. 17.
    Botlhoko OJ, Ramontja J, Ray SS (2017) Thermal, mechanical, and rheological properties of graphite- and graphene oxide-filled biodegradable polylactide/poly (E-caprolactone) blend composites. 45373:1–14.  https://doi.org/10.1002/app.45373CrossRefGoogle Scholar
  18. 18.
    Botlhoko JO, Ramontja J, Sinha S (2018) Morphological development and enhancement of thermal, mechanical, and electronic properties of thermally exfoliated graphene oxide- fi lled biodegradable polylactide/poly (ε-caprolactone) blend composites. Polymer (Guildf) 139:188–200.  https://doi.org/10.1016/j.polymer.2018.02.005CrossRefGoogle Scholar
  19. 19.
    Cao X, Xu C, Wang Y, Liu Y, Liu Y, Chen Y (2013) New nanocomposite materials reinforced with cellulose nanocrystals in nitrile rubber. Polym Test 32:819–826.  https://doi.org/10.1016/j.polymertesting.2013.04.005CrossRefGoogle Scholar
  20. 20.
    Cha J, Jin S, Hun J, Park CS, Ryu HJ, Hong SH (2016) Functionalization of carbon nanotubes for fabrication of CNT/ epoxy nanocomposites. JMADE 95:1–8.  https://doi.org/10.1016/j.matdes.2016.01.077CrossRefGoogle Scholar
  21. 21.
    Cheewawuttipong W, Fuoka D, Tanoue S, Uematsu H, Lemoto Y (2013) Thermal and mechanical properties of polypropylene/boron nitride composites. Energy Proc 34:808–817.  https://doi.org/10.1016/j.egypro.2013.06.817CrossRefGoogle Scholar
  22. 22.
    Chen PY, Lian HY, Shih YF, Chen-Wei SM, Jeng RJ (2017) Preparation, characterization and crystallization kinetics of Kenaf fiber/multi-walled carbon nanotube/polylactic acid (PLA) green composites. Mater Chem Phys 196:249–255.  https://doi.org/10.1016/j.matchemphys.2017.05.006CrossRefGoogle Scholar
  23. 23.
    Chen RS, Ahmad S (2017) Mechanical performance and fl ame retardancy of rice husk/ organoclay-reinforced blend of recycled plastics. Mater Chem Phys 198:57–65.  https://doi.org/10.1016/j.matchemphys.2017.05.054CrossRefGoogle Scholar
  24. 24.
    Chen RY, Zou W, Zhang HC, Zhang GZ, Yang ZT, Jin G, Qu JP (2015) Thermal behavior, dynamic mechanical properties and rheological properties of poly(butylene succinate) composites filled with nanometer calcium carbonate. Polym Test 42:160–167.  https://doi.org/10.1016/j.polymertesting.2015.01.015CrossRefGoogle Scholar
  25. 25.
    Chen Y, Liu C, Chang PR, Cao X, Anderson DP (2009) Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydr Polym 76:607–615.  https://doi.org/10.1016/j.carbpol.2008.11.030CrossRefGoogle Scholar
  26. 26.
    Cheng J, Zheng P, Zhao F, Ma X (2013) The composites based on plasticized starch and carbon nanotubes. Int J Biol Macromol 59:13–19.  https://doi.org/10.1016/j.ijbiomac.2013.04.010CrossRefGoogle Scholar
  27. 27.
    Chiu F (2016) Fabrication and characterization of biodegradable poly (butylene succinate-co-adipate) nanocomposites with halloysite nanotube and organo-montmorillonite as nano fi llers. Polym Test 54:1–11.  https://doi.org/10.1016/j.polymertesting.2016.06.018CrossRefGoogle Scholar
  28. 28.
    Chiu F (2017) Halloysite nanotube- and organoclay- fi lled biodegradable poly (butylene succinate-co-adipate)/ maleated polyethylene blend- based nanocomposites with enhanced rigidity. Compos Part B 110:193–203.  https://doi.org/10.1016/j.compositesb.2016.10.091CrossRefGoogle Scholar
  29. 29.
    Chiu FC, Chu PH (2006) Characterization of solution-mixed polypropylene/clay nanocomposites without compatibilizers. J Polym Res 13:73–78.  https://doi.org/10.1007/s10965-005-9009-7CrossRefGoogle Scholar
  30. 30.
    Daitx TS, Carli LN, Crespo JS, Mauler RS (2015) Effects of the organic modi fi cation of different clay minerals and their application in biodegradable polymer nanocomposites of PHBV. Appl Clay Sci 115:157–164.  https://doi.org/10.1016/j.clay.2015.07.038CrossRefGoogle Scholar
  31. 31.
    Dong H, Strawhecker KE, Snyder JF, Orlicki JA, Reiner RS, Rudie AW (2012) Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: Formation, properties and nanomechanical characterization. Carbohydr Polym 87:2488–2495.  https://doi.org/10.1016/j.carbpol.2011.11.015CrossRefGoogle Scholar
  32. 32.
    El-hadi AM (2017) Increase the elongation at break of poly (lactic acid) composites for use in food packaging films. Nat Publ Gr 1–14.  https://doi.org/10.1038/srep46767CrossRefGoogle Scholar
  33. 33.
    Essabir H, Boujmal R, Bensalah MO, Rodrigue D, Bouhfid R, Qaiss AK (2016) Mechanical and thermal properties of hybrid composites: oil-palm fiber/clay reinforced high density polyethylene. Mech Mater 98:36–43.  https://doi.org/10.1016/j.mechmat.2016.04.008CrossRefGoogle Scholar
  34. 34.
    Farahnaky A, Dadfar SMM, Shahbazi M (2014) Physical and mechanical properties of gelatin–clay nanocomposite. J Food Eng 122:78–83.  https://doi.org/10.1016/j.jfoodeng.2013.06.016CrossRefGoogle Scholar
  35. 35.
    Ferreira FV, Francisco W, Menezes BRC, Brito FS, Coutinho AS, Cividanes LS, Coutinho AR, Thim GP (2016) Correlation of surface treatment, dispersion and mechanical properties of HDPE/CNT nanocomposites. Appl Surf Sci 389:921–929.  https://doi.org/10.1016/j.apsusc.2016.07.164CrossRefGoogle Scholar
  36. 36.
    Floros M, Hojabri L, Abraham E, Jose J, Thomas S, Pothan L, Leao AL, Marine S (2012) Enhancement of thermal stability, strength and extensibility of lipid-based polyurethanes with cellulose-based nanofibers. Polym Degrad Stab 97:1970–1978.  https://doi.org/10.1016/j.polymdegradstab.2012.02.016CrossRefGoogle Scholar
  37. 37.
    Fukushima K, Tabuani D, Camino G (2012) Poly (lactic acid)/clay nanocomposites: effect of nature and content of clay on morphology, thermal and thermo-mechanical properties. Mater Sci Eng, C 32:1790–1795.  https://doi.org/10.1016/j.msec.2012.04.047CrossRefGoogle Scholar
  38. 38.
    Gao T, Li Y, Bao R, Liu ZY, Xie BH, Yang MB, Yang W (2017) Tailoring co-continuous like morphology in blends with highly asymmetric composition by MWCNTs: towards biodegradable high-performance electrical conductive poly (l-lactide) poly (3-hydroxybutyrate- co-4-hydroxybutyrate) blends. Compos Sci Technol 152:111–119.  https://doi.org/10.1016/j.compscitech.2017.09.014CrossRefGoogle Scholar
  39. 39.
    Giannakas A, Grigoriadi K, Leontiou A, Barkoula NM, Lavados A (2014) Preparation, characterization, mechanical and barrier properties investigation of chitosan—clay nanocomposites. Carbohydr Polym 108:103–111.  https://doi.org/10.1016/j.carbpol.2014.03.019CrossRefGoogle Scholar
  40. 40.
    Giannakas A, Vlacha M, Salmas C, Leontiou A, Katapodis P, Stamatis H, Barkoula NM, Ladavos A (2016) Preparation, characterization, mechanical, barrier and antimicrobial properties of chitosan/PVOH/clay nanocomposites. Carbohydr Polym 140:408–415.  https://doi.org/10.1016/j.carbpol.2015.12.072CrossRefGoogle Scholar
  41. 41.
    Gumede TP, Luyt AS, Hassan MK, Pérez-Camargo RA, Tercjak A, Müller AJ (2017) Morphology, nucleation, and isothermal crystallization kinetics of poly(ε-caprolactone) mixed with a polycarbonate/MWCNTs masterbatch. Polymers  https://doi.org/10.3390/polym9120709CrossRefGoogle Scholar
  42. 42.
    Gumede TP, Luyt AS, Pèrez-Camargo RA, Müller AJ (2017) The influence of paraffin wax addition on the isothermal crystallization of LLDPE. J App Poly Sci 44398:1–7.  https://doi.org/10.1002/app.44398
  43. 43.
    Guo Y, Yang K, Zuo X et al (2016) Effects of clay platelets and natural nanotubes on mechanical properties and gas permeability of Poly (lactic acid) nanocomposites. Polymer (Guildf) 83:246–259.  https://doi.org/10.1016/j.polymer.2015.12.012CrossRefGoogle Scholar
  44. 44.
    Il HS, Im SS, Kim DK (2003) Dynamic mechanical and melt rheological properties of sulfonated poly(butylene succinate) ionomers. Polymer (Guildf) 44:7165–7173.  https://doi.org/10.1016/S0032-3861(03)00673-6CrossRefGoogle Scholar
  45. 45.
    Hietala M, Mathew AP, Oksman K (2013) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 49:950–956.  https://doi.org/10.1016/j.eurpolymj.2012.10.016CrossRefGoogle Scholar
  46. 46.
    Huang J, Zhang S, Zhang F, Guo Z, Jin L, Pan Y, Wang Y, Guo T (2017) Enhancement of lignocellulose-carbon nanotubes composites by lignocellulose grafting. Carbohydr Polym 160:115–122.  https://doi.org/10.1016/j.carbpol.2016.12.053CrossRefGoogle Scholar
  47. 47.
    John MJ, Anandjiwala R, Oksman K, Mathew AP (2013) Melt-spun polylactic acid fibers: effect of cellulose nanowhiskers on processing and properties. J Appl Polym Sci 127:274–281.  https://doi.org/10.1002/app.37884CrossRefGoogle Scholar
  48. 48.
    Jonoobi M, Aitomäki Y, Mathew AP, Oksman K (2014) Thermoplastic polymer impregnation of cellulose nanofibre networks: morphology, mechanical and optical properties. Compos Part A Appl Sci Manuf 58:30–35.  https://doi.org/10.1016/j.compositesa.2013.11.010CrossRefGoogle Scholar
  49. 49.
    Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747.  https://doi.org/10.1016/j.compscitech.2010.07.005CrossRefGoogle Scholar
  50. 50.
    Jyoti J, Basu S, Pratap B, Dhakate SR (2015) Superior mechanical and electrical properties of multiwall carbon nanotube reinforced acrylonitrile butadiene styrene high performance composites. Compos Part B 83:58–65.  https://doi.org/10.1016/j.compositesb.2015.08.055CrossRefGoogle Scholar
  51. 51.
    Kanmani P, Rhim J (2014) Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocoll 35:644–652.  https://doi.org/10.1016/j.foodhyd.2013.08.011CrossRefGoogle Scholar
  52. 52.
    Khan AS, Hussain AN, Sidra L, Sarfraz Z, Khalid H, Khan M, Manzoor F, Shahzadi L, Yar M, Rehman IU (2017) Fabrication and in vivo evaluation of hydroxyapatite/carbon nanotube electrospun fi bers for biomedical/dental application. Mater Sci Eng, C 80:387–396.  https://doi.org/10.1016/j.msec.2017.05.109CrossRefGoogle Scholar
  53. 53.
    Khoshkava V, Kamal MR (2014) Effect of cellulose nanocrystals (CNC) particle morphology on dispersion and rheological and mechanical properties of polypropylene/CNC nanocomposites.  https://doi.org/10.1021/am500577eCrossRefGoogle Scholar
  54. 54.
    Khumalo VM, Karger-Kocsis J, Thomann R (2010) Polyethylene/synthetic boehmite alumina nanocomposites: structure, thermal and rheological properties. eXPPRES Poly Lett 4: 264–274.  https://doi.org/10.3144/expresspolymlett.2010.34CrossRefGoogle Scholar
  55. 55.
    Krainoi A, Kummerlöwe C, Nakaramontri Y, Vennemann N, Pichaiyut S, Wisunthorn S, Nakason C (2018) Influence of critical carbon nanotube loading on mechanical and electrical properties of epoxidized natural rubber nanocomposites. Polym Test 66:122–136.  https://doi.org/10.1016/j.polymertesting.2018.01.003CrossRefGoogle Scholar
  56. 56.
    Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Effect of functionalized graphene on the physical properties of linear low density polyethylene nanocomposites. Polym Test 31:31–38.  https://doi.org/10.1016/j.polymertesting.2011.09.007CrossRefGoogle Scholar
  57. 57.
    Lai S, Wu S, Lin G, Don T (2014) Unusual mechanical properties of melt-blended poly (lactic acid) (PLA)/clay nanocomposites. Eur Polym J 52:193–206.  https://doi.org/10.1016/j.eurpolymj.2013.12.012CrossRefGoogle Scholar
  58. 58.
    Lekha P, Mtibe A, Motaung T., Andrew JE, Sithole BB, Gibril M (2016) Effect of mechanical treatment on properties of cellulose nanofibrils produced from bleached hardwood and softwood pulps. Maderas Cienc y Tecnol 18:0–0.  https://doi.org/10.4067/s0718-221x2016005000041
  59. 59.
    Lendvai L, Apostolov A, Karger-kocsis J (2017) Characterization of layered silicate-reinforced blends of thermoplastic starch (TPS) and poly (butylene adipate-co-terephthalate). Carbohydr Polym 173:566–572.  https://doi.org/10.1016/j.carbpol.2017.05.100CrossRefGoogle Scholar
  60. 60.
    Liao CZ, Li K, Wong HM, Tong WY, Yeung KWK, Tjong SC (2013) Novel polypropylene biocomposites reinforced with carbon nanotubes and hydroxyapatite nanorods for bone replacements. Mater Sci Eng, C 33(3):1380–1388CrossRefGoogle Scholar
  61. 61.
    Lin C, Wang Y, Lai Y, Yang W, Jiao F, Zhang H, Ye S, Zhang Q (2011) Colloids and surfaces B: biointerfaces Incorporation of carboxylation multiwalled carbon nanotubes into biodegradable poly (lactic-co-glycolic acid) for bone tissue engineering. Colloids Surfs B Biointerfaces 83:367–375.  https://doi.org/10.1016/j.colsurfb.2010.12.011CrossRefGoogle Scholar
  62. 62.
    Liu H, Liu D, Yao F, Wu Q (2010) Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Bioresour Technol 101:5685–5692.  https://doi.org/10.1016/j.biortech.2010.02.045CrossRefGoogle Scholar
  63. 63.
    Lopez-manchado MA, Brasero J, Avil F (2016) Effect of the morphology of thermally reduced graphite oxide on the mechanical and electrical properties of natural rubber nanocomposites. Compos Part B: Eng 87:350–356.  https://doi.org/10.1016/j.compositesb.2015.08.079CrossRefGoogle Scholar
  64. 64.
    Majeed K, Al M, Almaadeed A, Zagho MM (2018) Comparison of the effect of carbon, halloysite and titania nanotubes on the mechanical and thermal properties of LDPE based nanocomposite films. Chinese J Chem Eng 26:428–435.  https://doi.org/10.1016/j.cjche.2017.09.017CrossRefGoogle Scholar
  65. 65.
    Malas A, Pal P, Das CK (2014) Effect of expanded graphite and modified graphite flakes on the physical and thermo-mechanical properties of styrene butadiene rubber/polybutadiene rubber (SBR/BR) blends. Mater Des 55:664–673.  https://doi.org/10.1016/j.matdes.2013.10.038CrossRefGoogle Scholar
  66. 66.
    Malkappa K, Rao BN, Jana T (2016) Functionalized polybutadiene diol based hydrophobic, water dispersible polyurethane nanocomposites: role of organo-clay structure. Polymer (Guildf) 99:404–416.  https://doi.org/10.1016/j.polymer.2016.07.039CrossRefGoogle Scholar
  67. 67.
    Mandal A, Chakrabarty D (2014) Journal of industrial and engineering chemistry studies on the mechanical, thermal, morphological and barrier properties of nanocomposites based on poly (vinyl alcohol) and nanocellulose from sugarcane bagasse. J Ind Eng Chem 20:462–473.  https://doi.org/10.1016/j.jiec.2013.05.003CrossRefGoogle Scholar
  68. 68.
    Mangeon C, Mahouche-Chergui S, Versace DL, Guerrouache M, Carbonnier B, Langlois V, Renard E (2015) Reactive & functional polymers poly (3-hydroxyalkanoate)-grafted carbon nanotube nanofillers as reinforcing agent for PHAs-based electrospun mats. React Funct Polym 89:18–23.  https://doi.org/10.1016/j.reactfunctpolym.2015.03.001CrossRefGoogle Scholar
  69. 69.
    Mashhadzadeh AH, Fereidoon A, Ahangari MG (2017) Surface modification of carbon nanotubes using 3-aminopropyltriethoxysilane to improve mechanical properties of nanocomposite based polymer matrix: experimental and density functional theory study. Appl Surf Sci 420:167–179.  https://doi.org/10.1016/j.apsusc.2017.05.148CrossRefGoogle Scholar
  70. 70.
    Mochane MJ (2014) Thermal and mechanical properties of polyolefins/Wax Pcm blends prepared with and without expanded graphiteGoogle Scholar
  71. 71.
    Mochane MJ, Luyt AS (2015) The Effect of expanded graphite on the thermal stability, latent heat, and flammability properties of EVA/Wax phase change blends. Polym Eng Sci  https://doi.org/10.1002/pen
  72. 72.
    Mofokeng TG, Ray SS, Ojijo V (2018a) Structure—property relationship in PP/LDPE blend composites : The role of nanoclay localization. 46193:1–12.  https://doi.org/10.1002/app.46193CrossRefGoogle Scholar
  73. 73.
    Mofokeng TG, Ray SS, Ojijo V (2018b) Influence of selectively localised nanoclay particles on non-isothermal crystallisation and degradation behaviour of PP/LDPE blend composites.  https://doi.org/10.3390/polym10030245CrossRefGoogle Scholar
  74. 74.
    Moradi M, Mohandesi JA, Haghshenas DF (2015) Mechanical properties of the poly (vinyl alcohol) based nanocomposites at low content of surfactant wrapped graphene sheets. Polymer (Guildf) 60:207–214.  https://doi.org/10.1016/j.polymer.2015.01.044CrossRefGoogle Scholar
  75. 75.
    Motaung TE, Mtibe A (2015) Alkali treatment and cellulose nanowhiskers extracted from maize stalk residues. Mater Sci App 6:1022–1032.  https://doi.org/10.4236/msa.2015.611102CrossRefGoogle Scholar
  76. 76.
    Moustafa H, Galliard H, Vidal L, Dufresne A (2017) Facile modification of organoclay and its effect on the compatibility and properties of novel biodegradable PBE/PBAT nanocomposites. Eur Polym J 87:188–199.  https://doi.org/10.1016/j.eurpolymj.2016.12.009CrossRefGoogle Scholar
  77. 77.
    Mtibe A, Linganiso LZ, Mathew AP, Oksman K, John MJ, Anandjiwala RD (2015a) A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres. Carbohydr Polym 118:1–8.  https://doi.org/10.1016/j.carbpol.2014.10.007CrossRefGoogle Scholar
  78. 78.
    Mtibe A, Mandlevu Y, Linganiso LZ, Anandjiwala RD (2015b) Extraction of cellulose nanowhiskers from flax fibres and their reinforcing effect on poly (furfuryl) alcohol. 9:1–9.  https://doi.org/10.1166/jbmb.2015.1531CrossRefGoogle Scholar
  79. 79.
    Murariu M, Dechief AL, Bonnaud L, Paint Y, Gallos A, Fontaine G, Bourbigot S, Dubois P (2010) The production and properties of polylactide composites filled with expanded graphite. Polym Degrad Stab 95:889–900.  https://doi.org/10.1016/j.polymdegradstab.2009.12.019CrossRefGoogle Scholar
  80. 80.
    Nikkhah SJ, Ramazani A, Baniasadi H, Tavakolzadeh F (2009) Investigation of properties of polyethylene/clay nanocomposites prepared by new in situ Ziegler-Natta catalyst. Mater Des 30:2309–2315.  https://doi.org/10.1016/j.matdes.2008.11.019CrossRefGoogle Scholar
  81. 81.
    Ortiz AV, Teixeira JG, Gomes MG, Oliveira RR, Díaz FRV, Moura EAB (2014) Preparation and characterization of electron-beam treated HDPE composites reinforced with rice husk ash and Brazilian clay. Appl Surf Sci 310:331–335.  https://doi.org/10.1016/j.apsusc.2014.03.075CrossRefGoogle Scholar
  82. 82.
    Pedrazzoli D, Ceccato R, Karger-Kocsis J, Pegoretti A (2013) Viscoelastic behaviour and fracture toughness of linear-low-density polyethylene reinforced with synthetic boehmite alumina nanoparticles. Express Polym Lett 7:652–666.  https://doi.org/10.3144/expresspolymlett.2013.62CrossRefGoogle Scholar
  83. 83.
    Pedrazzoli D, Pegoretti A (2014) Expanded graphite nanoplatelets as coupling agents in glass fiber reinforced polypropylene composites. Compos Part A Appl Sci Manuf 66:25–34.  https://doi.org/10.1016/j.compositesa.2014.06.016CrossRefGoogle Scholar
  84. 84.
    Phua YJ, Lau NS, Sudesh K, Chow WS, Ishak ZAM (2012) Biodegradability studies of poly (butylene succinate)/organo-montmorillonite nanocomposites under controlled compost soil conditions: effects of clay loading and compatibiliser. Polym Degrad Stab 97:1345–1354.  https://doi.org/10.1016/j.polymdegradstab.2012.05.024CrossRefGoogle Scholar
  85. 85.
    Ranjan N, Roy I, Sarkar G, Bhattacharyya A, Das R, Rana D, Banerjee R, Paul AK, Mishra R, Chattopadhyay D (2018) Development of active packaging material based on cellulose acetate butyrate/polyethylene glycol/aryl ammonium cation modi fi ed clay. Carbohydr Polym 187:8–18.  https://doi.org/10.1016/j.carbpol.2018.01.065CrossRefGoogle Scholar
  86. 86.
    Reddy MM, Vivekanandhan S, Misra M, Bhatia SK, Mohanty AK (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 38:1653–1689.  https://doi.org/10.1016/j.progpolymsci.2013.05.006CrossRefGoogle Scholar
  87. 87.
    Rezakazemi M, Dashti A, Asghari M, Shirazian S (2017) H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS. Int J Hydrogen Energy 42:15211–15225.  https://doi.org/10.1016/j.ijhydene.2017.04.044CrossRefGoogle Scholar
  88. 88.
    Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati MM, Ismail AF, Matsuura T (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39:817–861.  https://doi.org/10.1016/j.progpolymsci.2014.01.003CrossRefGoogle Scholar
  89. 89.
    Rezakazemi M, Mohammadi T (2013) Gas sorption in H2-selective mixed matrix membranes: experimental and neural network modeling. Int J Hydrogen Energy 38:14035–14041.  https://doi.org/10.1016/j.ijhydene.2013.08.062CrossRefGoogle Scholar
  90. 90.
    Rezakazemi M, Razavi S, Mohammadi T, Nazari AG (2011) Simulation and determination of optimum conditions of pervaporative dehydration of isopropanol process using synthesized PVA-APTEOS/TEOS nanocomposite membranes by means of expert systems. J Memb Sci 379:224–232.  https://doi.org/10.1016/j.memsci.2011.05.070CrossRefGoogle Scholar
  91. 91.
    Rezakazemi M, Sadrzadeh M, Matsuura T (2018) Thermally stable polymers for advanced high-performance gas separation membranes. Prog Energy Combust Sci 66:1–41.  https://doi.org/10.1016/j.pecs.2017.11.002CrossRefGoogle Scholar
  92. 92.
    Rezakazemi M, Sadrzadeh M, Mohammadi T, Matsuura T (2017b) Methods for the preparation of organic-inorganic nanocomposite polymer electrolyte membranes for fuel cellsGoogle Scholar
  93. 93.
    Rezakazemi M, Shahidi K, Mohammadi T (2012a) Sorption properties of hydrogen-selective PDMS/zeolite 4A mixed matrix membrane. Int J Hydrogen Energy 37:17275–17284.  https://doi.org/10.1016/j.ijhydene.2012.08.109CrossRefGoogle Scholar
  94. 94.
    Rezakazemi M, Shahidi K, Mohammadi T (2012b) Hydrogen separation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matrix membranes. Int J Hydrogen Energy 37:14576–14589.  https://doi.org/10.1016/j.ijhydene.2012.06.104CrossRefGoogle Scholar
  95. 95.
    Rezakazemi M, Vatani A, Mohammadi T (2015) Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes. RSC Adv 5:82460–82470.  https://doi.org/10.1039/c5ra13609aCrossRefGoogle Scholar
  96. 96.
    Rezakazemi M, Vatani A, Mohammadi T (2016) Synthesis and gas transport properties of crosslinked poly(dimethylsiloxane) nanocomposite membranes using octatrimethylsiloxy POSS nanoparticles. J Nat Gas Sci Eng 30:10–18.  https://doi.org/10.1016/j.jngse.2016.01.033CrossRefGoogle Scholar
  97. 97.
    Sanchez-garcia MD, Lagaron JM, Hoa SV (2010) Effect of addition of carbon nanofibers and carbon nanotubes on properties of thermoplastic biopolymers. Compos Sci Technol 70:1095–1105.  https://doi.org/10.1016/j.compscitech.2010.02.015CrossRefGoogle Scholar
  98. 98.
    Sefadi JS, Luyt AS, Pionteck J, Gohs U (2015) Effect of surfactant and radiation treatment on the morphology and properties of PP/EG composites. J Mater Sci 50:6021–6031.  https://doi.org/10.1007/s10853-015-9149-zCrossRefGoogle Scholar
  99. 99.
    Shafiq M, Yasin T, Saeed S (2012) Synthesis and characterization of linear low-density polyethylene/sepiolite nanocomposites. J Appl Polym Sci 123:1718–1723.  https://doi.org/10.1002/app.34633CrossRefGoogle Scholar
  100. 100.
    Shah KJ, Shukla AD, Shah DO, Imae T (2016) Effect of organic modi fi ers on dispersion of organoclay in polymer nanocomposites to improve mechanical properties. Polymer (Guildf) 97:525–532.  https://doi.org/10.1016/j.polymer.2016.05.066CrossRefGoogle Scholar
  101. 101.
    Shahverdi M, Baheri B, Rezakazemi M, Motaee E, Mohammadi T (2013) Pervaporation study of ethylene glycol dehydration through synthesized (PVA-4A)/polypropylene mixed matrix composite membranes. Polym Eng Sci 53:1487–1493.  https://doi.org/10.1002/pen.23406CrossRefGoogle Scholar
  102. 102.
    Shi Q, Zhou C, Yue Y, Guo W, Wu Y, Wu Q (2012) Mechanical properties and in vitro degradation of electrospun bio-nanocomposite mats from PLA and cellulose nanocrystals. Carbohydr Polym 90:301–308.  https://doi.org/10.1016/j.carbpol.2012.05.042CrossRefGoogle Scholar
  103. 103.
    Sibeko MA, Luyt AS (2013) Preparation and characterization of vinylsilane crosslinked high-density polyethylene compositesfilled with nanoclays. Polym Compos 34:1720–1727.  https://doi.org/10.1002/pc.22575CrossRefGoogle Scholar
  104. 104.
    Silva BL, Nack FC, Lepienski CM, Coelho LAF, Becker D (2014) Influence of intercalation methods in properties of clay and carbon nanotube and high density polyethylene nanocomposites. Mater Res 17:1628–1636.  https://doi.org/10.1590/1516-1439.303714CrossRefGoogle Scholar
  105. 105.
    Song P, Cao Z, Cai Y, Zhao L, Fang Z, Fu S (2011) Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer (Guildf) 52:4001–4010.  https://doi.org/10.1016/j.polymer.2011.06.045CrossRefGoogle Scholar
  106. 106.
    Song X, Zhou S, Wang Y, Kang W, Cheng B (2012) Mechanical properties and crystallization behavior of polypropylene non-woven fabrics reinforced with POSS and SiO2 nanoparticles. 13:1015–1022.  https://doi.org/10.1007/s12221-012-1015-xCrossRefGoogle Scholar
  107. 107.
    Sullivan EM, Moon RJ, Kalaitzidou K (2015) Processing and characterization of cellulose nanocrystals/polylactic acid nanocomposite films. Mater 2015:8106–8116.  https://doi.org/10.3390/ma8125447CrossRefGoogle Scholar
  108. 108.
    Tan L, Chen Y, Zhou W, Ye S, Wei J (2011) Novel approach toward poly(butylene succinate)/single-walled carbon nanotubes nanocomposites with interfacial-induced crystallization behaviors and mechanical strength. Polymer 52:3587–3596.  https://doi.org/10.1016/j.polymer.2011.06.006CrossRefGoogle Scholar
  109. 109.
    Tarfaoui M, Lafdi K, El MA (2016) Mechanical properties of carbon nanotubes based polymer composites. Compos Part B 103:113–121.  https://doi.org/10.1016/j.compositesb.2016.08.016CrossRefGoogle Scholar
  110. 110.
    Valapa RB, Pugazhenthi G, Katiyar V (2015) Effect of graphene content on the properties of poly(lactic acid) nanocomposites. RSC Adv 5:28410–28423.  https://doi.org/10.1039/C4RA15669BCrossRefGoogle Scholar
  111. 111.
    Wan Y, Gong L, Tang L, Wu LB, Jiang JX (2014) Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide. Compos PART A 64:79–89.  https://doi.org/10.1016/j.compositesa.2014.04.023CrossRefGoogle Scholar
  112. 112.
    Wang L, Qiu J, Sakai E, Wei X (2016) The relationship between microstructure and mechanical properties of carbon nanotubes/polylactic acid nanocomposites prepared by twin-screw extrusion. Compos Part A 89:18–25.  https://doi.org/10.1016/j.compositesa.2015.12.016CrossRefGoogle Scholar
  113. 113.
    Xu S, Girouard N, Schueneman G, Shofner ML, Meredith JC (2013) Mechanical and thermal properties of waterborne epoxy composites containing cellulose nanocrystals. Polymer (Guildf) 54:6589–6598.  https://doi.org/10.1016/j.polymer.2013.10.011CrossRefGoogle Scholar
  114. 114.
    Yang ZY, Wang WJ, Shao ZQ, Zhu HD, Li YH, Wang FJ (2013) The transparency and mechanical properties of cellulose acetate nanocomposites using cellulose nanowhiskers as fillers. Cellulose 20:159–168.  https://doi.org/10.1007/s10570-012-9796-zCrossRefGoogle Scholar
  115. 115.
    Yasmin A, Daniel IM (2004) Mechanical and thermal properties of graphite platelet/epoxy composites. Polymer (Guildf) 45:8211–8219.  https://doi.org/10.1016/j.polymer.2004.09.054CrossRefGoogle Scholar
  116. 116.
    Younesi H, Farsi M, Rezazadeh Z (2013) Physical, mechanical and morphological properties of polymer composites manufactured from carbon nanotubes and wood flour. Compos Part B 44:750–755.  https://doi.org/10.1016/j.compositesb.2012.04.023CrossRefGoogle Scholar
  117. 117.
    Zahedi Y, Fathi-achachlouei B, Yousefi AR (2017) Physical and mechanical properties of hybrid montmorillonite/zinc oxide reinforced carboxymethyl cellulose nanocomposites. Int J Biol Macromol.  https://doi.org/10.1016/j.ijbiomac.2017.10.185CrossRefGoogle Scholar
  118. 118.
    Zhan J, Chen Y, Tang G, Pan H, Zhang Q, Song L, Hu Y (2014) Crystallization and melting properties of poly (butylene succinate) composites with titanium dioxide nanotubes or hydroxyapatite nanorods. J App Poly Sci 40335:1–10.  https://doi.org/10.1002/app.40335CrossRefGoogle Scholar
  119. 119.
    Zhang X, Zhang Y (2015) Poly(butylene succinate-co-butylene adipate)/cellulose nanocrystal composites modified with phthalic anhydride. Carbohydr Polym 134:52–59.  https://doi.org/10.1016/j.carbpol.2015.07.078CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • T. H. Mokhothu
    • 1
  • A. Mtibe
    • 2
    Email author
  • T. C. Mokhena
    • 2
    • 3
    Email author
  • M. J. Mochane
    • 4
  • O. Ofosu
    • 2
  • S. Muniyasamy
    • 2
  • C. A. Tshifularo
    • 2
    • 3
  • T. S. Motsoeneng
    • 5
  1. 1.Department of ChemistryDurban University of TechnologyDurbanSouth Africa
  2. 2.CSIR Materials Science and Manufacturing, Polymers and Composites Competence Area, Nonwovens and Composites Research GroupPort ElizabethSouth Africa
  3. 3.Department of ChemistryNelson Mandela UniversityPort ElizabethSouth Africa
  4. 4.Department of Life SciencesCentral University of Technology Free StateBloemfonteinSouth Africa
  5. 5.Department of Polymer TechnologyTshwane University of TechnologyPretoriaSouth Africa

Personalised recommendations