Biocompatible and Biodegradable Chitosan Composites in Wound Healing Application: In Situ Novel Photo-Induced Skin Regeneration Approach

  • Amr A. EssawyEmail author
  • Hassan Hefni
  • A. M. El-Nggar


Biocompatible and biodegradable polymers have a significant impact in a wide range of biomedical applications such as wound healing. For this purpose, demanded materials must have, a specific physical, chemical, biological, biomechanical properties and able to be broken down and removed after they have served their function to provide effective therapy. In the recent progress of biomedical treatment of wounds, there is a continuous need to improve both the appearance and functionality of the regenerated healed tissue. Modern clinical findings in that approach make use of the versatility, efficacy and functionality of chitosan composites. This chapter presents an overview of biocompatible and biodegradable polymers focusing on chitosan-based composites, underlying concepts of their properties and the ways to tailor their potential in biomedical engineering/management of wound healing. However, providing novel strategies that achieve a low cost and shorter wound closure is an ongoing challenge to be addressed. Finally, new insights concluded from our recent study cases reports for novel chitosan grafted poly (N-methyl aniline) nanoparticles that show an advanced therapeutic dressing via interesting photo-therapy results within a promising photo-driven skin regeneration under visible-light irradiation. The photoactive surface of grafted chitosan could produce reactive oxidizing species by which infectious microorganisms could be killed. Therefore, the wounded tissues are repaired and regenerated.


Chitosan Biocompatible/biodegradable polymers Biomedical application Wound healing Phototherapy 

List of Abbreviations


Water absorbency


Chitosan-based copper nanocomposite




Colony-forming unit


Carboxymethyl chitosan






Chitosan nanoparticles


Chitosan hydrogel/nano-ZnO nanocomposite bandages








Degree of polymerization




Extracellular matrix


American Food and Drug Administration


Fourier transform infrared






Melatonin-loaded chitosan-based microspheres


Molecular weight


Myeloid differentiation primary-response protein 88


Nuclear factor-kappa


Nuclear magnetic resonance




Polyvinyl alcohol


Quercetin-loaded chitosan–fibrin


Reactive oxygen species


Silver sulfadiazine


Toll-like receptor 4


N,N,N-Trimethyl chitosan


Tumor necrosis factor-alpha


  1. 1.
    Zivic F et al (2017) Biomaterials in clinical practice: advances in clinical research and medical devices. Springer, BerlinGoogle Scholar
  2. 2.
    Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8–9):762–798CrossRefGoogle Scholar
  3. 3.
    Mir M et al (2018) Synthetic polymeric biomaterials for wound healing: a review. Progress Biomater 1–21CrossRefGoogle Scholar
  4. 4.
    Yudanova TN, Reshetov IV (2006) Modern wound dressings: manufacturing and properties. Pharm Chem J 40(2):85CrossRefGoogle Scholar
  5. 5.
    Pandey AR, Singh US, Momin M, Bhavsar C (2017) Chitosan: application in tissue engineering and skin grafting. J Polym Res 24(8):125CrossRefGoogle Scholar
  6. 6.
    Liu X et al (2016) In vitro BMP-2 peptide release from thiolated chitosan based hydrogel. Int J Biol Macromol 93:314–321CrossRefGoogle Scholar
  7. 7.
    Jayakumar R et al (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29(3):322–337CrossRefGoogle Scholar
  8. 8.
    Howling GI et al (2001) The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro. Biomaterials 22(22):2959–2966CrossRefGoogle Scholar
  9. 9.
    Li P et al (2011) A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat Mater 10(2):149CrossRefGoogle Scholar
  10. 10.
    Dutta PK (2016) Chitin and chitosan for regenerative medicine. Springer, BerlinCrossRefGoogle Scholar
  11. 11.
    Klee D, Höcker H (2000) Polymers for biomedical applications: improvement of the interface compatibility. In: Biomedical applications polymer blends. Springer, pp 1–57Google Scholar
  12. 12.
    Rickert D et al (2006) Biocompatibility testing of novel multifunctional polymeric biomaterials for tissue engineering applications in head and neck surgery: an overview. Eur Arch Oto-Rhino-Laryngol Head Neck 263(3):215–222CrossRefGoogle Scholar
  13. 13.
    Velnar T, Bailey T, Smrkolj V (2009) The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 37(5):1528–1542CrossRefGoogle Scholar
  14. 14.
    Patrulea V, Ostafe V, Borchard G, Jordan O (2015) Chitosan as a starting material for wound healing applications. Eur J Pharm Biopharm 97:417–426CrossRefGoogle Scholar
  15. 15.
    Sen CK et al (2009) Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regeneration 17(6):763–771CrossRefGoogle Scholar
  16. 16.
    Shevchenko RV, James SL, James SE (2009) A review of tissue-engineered skin bioconstructs available for skin reconstruction. J Royal Soc Interface rsif20090403Google Scholar
  17. 17.
    Percival SL et al (2012) A review of the scientific evidence for biofilms in wounds. Wound Repair Regeneration 20(5):647–657CrossRefGoogle Scholar
  18. 18.
    Li X, Mohan S, Gu W, Baylink DJ (2001) Analysis of gene expression in the wound repair/regeneration process. Mamm Genome 12(1):52–59CrossRefGoogle Scholar
  19. 19.
    Jorgensen SN, Sanders JR (2016) Mathematical models of wound healing and closure: a comprehensive review. Med Biol Eng Compu 54(9):1297–1316CrossRefGoogle Scholar
  20. 20.
    Kennedy KM, Bhaw-Luximon A, Jhurry D (2017) Skin tissue engineering: biological performance of electrospun polymer scaffolds and translational challenges. Regenerative Eng Transl Med 3(4):201–214CrossRefGoogle Scholar
  21. 21.
    Fitzmaurice GJ et al (2014) Do statins have a role in the promotion of postoperative wound healing in cardiac surgical patients? Ann Thorac Surg 98(2):756–764CrossRefGoogle Scholar
  22. 22.
    Braiman-Wiksman L, Solomonik I, Spira R, Tennenbaum T (2007) Novel insights into wound healing sequence of events. Toxicol Pathol 35(6):767–779CrossRefGoogle Scholar
  23. 23.
    Diegelmann RF, Evans MC et al (2004) Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9(1):283–289CrossRefGoogle Scholar
  24. 24.
    Muzzarelli RAA (2009) Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohyd Polym 76(2):167–182CrossRefGoogle Scholar
  25. 25.
    Fonder MA et al (2008) Treating the chronic wound: a practical approach to the care of nonhealing wounds and wound care dressings. J Am Acad Dermatol 58(2):185–206CrossRefGoogle Scholar
  26. 26.
    Dhivya S, Padma VV, Santhini E (2015) Wound dressings—a review. Biomedicine 5(4)Google Scholar
  27. 27.
    Rivera AE, Spencer JM (2007) Clinical aspects of full-thickness wound healing. Clin Dermatol 25(1):39–48CrossRefGoogle Scholar
  28. 28.
    Boateng JS, Matthews KH, Stevens HNE, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97(8):2892–2923CrossRefGoogle Scholar
  29. 29.
    Sarabahi S (2012) Recent advances in topical wound care. Indian J Plast Surg: Official Publ Assoc Plast Surg India 45(2):379CrossRefGoogle Scholar
  30. 30.
    Lio PA, Kaye ET (2009) Topical antibacterial agents. Infect Dis Clin North Am 23(4):945–963CrossRefGoogle Scholar
  31. 31.
    Vert M et al (2012) Terminology for biorelated polymers and applications (IUPAC recommendations 2012). Pure Appl Chem 84(2):377–410CrossRefGoogle Scholar
  32. 32.
    Huang S, Fu X (2010) Naturally derived materials-based cell and drug delivery systems in skin regeneration. J Controlled Release 142(2):149–159CrossRefGoogle Scholar
  33. 33.
    Santos TC et al (2007) In vitro evaluation of the behaviour of human polymorphonuclear neutrophils in direct contact with chitosan-based membranes. J Biotechnol 132(2):218–226CrossRefGoogle Scholar
  34. 34.
    Ueno H, Mori T, Fujinaga T (2001) Topical formulations and wound healing applications of chitosan. Adv Drug Deliv Rev 52(2):105–115CrossRefGoogle Scholar
  35. 35.
    Peniche C, Argüelles-Monal W, Goycoolea FM (2008) Chitin and chitosan: major sources, properties and applications. Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp 517–542CrossRefGoogle Scholar
  36. 36.
    Kumar MNVR (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27CrossRefGoogle Scholar
  37. 37.
    Pillai CKS, Paul Willi, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34(7):641–678CrossRefGoogle Scholar
  38. 38.
    Hussein MHM et al (2013) Preparation of some eco-friendly corrosion inhibitors having antibacterial activity from sea food waste. J Surfactants Deterg 16(2):233–242Google Scholar
  39. 39.
    El-Fattah MA et al (2016) Improvement of corrosion resistance, antimicrobial activity, mechanical and chemical properties of epoxy coating by loading chitosan as a natural renewable resource. Prog Org Coat 101:288–296CrossRefGoogle Scholar
  40. 40.
    de Velde K, Kiekens P (2004) Structure analysis and degree of substitution of chitin, chitosan and dibutyrylchitin by FT-IR spectroscopy and solid state 13C NMR. Carbohyd Polym 58(4):409–416CrossRefGoogle Scholar
  41. 41.
    Wasikiewicz JM, Yeates SG (2013) ‘Green’ molecular weight degradation of chitosan using microwave irradiation. Polym Degrad Stab 98(4):863–867CrossRefGoogle Scholar
  42. 42.
    Ramawat KP, Mérillon J-M (2015) Polysaccharides: bioactivity and biotechnology. Springer, HeidelbergCrossRefGoogle Scholar
  43. 43.
    Negm NA et al (2015) Treatment of industrial wastewater containing copper and cobalt ions using modified chitosan. J Ind Eng Chem 21:526–534CrossRefGoogle Scholar
  44. 44.
    Muzzarelli RAA, Muzzarelli C (2005) Chitosan chemistry: relevance to the biomedical sciences. In: Polysaccharides I. Springer, Berlin, pp 151–209Google Scholar
  45. 45.
    Vo D-T, Sabrina S, Lee C-K (2017) Silver deposited carboxymethyl chitosan-grafted magnetic nanoparticles as dual action deliverable antimicrobial materials. Mater Sci Eng, C 73:544–551CrossRefGoogle Scholar
  46. 46.
    Muzzarelli R, Delben F, Ilari P, Tomasetti M (1994) N-(Carboxymethyl) chitosan, a versatile chitin derivative. Agro-Food-Industry Hi-TechGoogle Scholar
  47. 47.
    Wu M, Long Z, Xiao H, Dong C (2016) Recent research progress on preparation and application of N,N,N-trimethyl chitosan. Carbohyd Res 434:27–32CrossRefGoogle Scholar
  48. 48.
    Mourya VK, Inamdar NN (2009) Trimethyl chitosan and its applications in drug delivery. J Mater Sci Mater Med 20(5):1057CrossRefGoogle Scholar
  49. 49.
    Casettari L et al (2012) PEGylated chitosan derivatives: synthesis, characterizations and pharmaceutical applications. Prog Polym Sci 37(5):659–685CrossRefGoogle Scholar
  50. 50.
    Hefni HHH et al (2016) Synthesis, characterization and anticorrosion potentials of Chitosan-g-PEG assembled on silver nanoparticles. Int J Biol Macromol 83:297–305CrossRefGoogle Scholar
  51. 51.
    Huaixan LN et al (2016) Macroscopic, histochemical, and immunohistochemical comparison of hysterorrhaphy using catgut and chitosan suture wires. J Biomed Mater Res B Appl Biomater 104(1):50–57CrossRefGoogle Scholar
  52. 52.
    Hein S, Wang K, Stevens WF, Kjems J (2008) Chitosan composites for biomedical applications: status, challenges and perspectives. Mater Sci Technol 24(9):1053–1061CrossRefGoogle Scholar
  53. 53.
    Raabe D et al (2006) Microstructure and crystallographic texture of the chitin-protein network in the biological composite material of the exoskeleton of the Lobster Homarus americanus. Mater Sci Eng A 421(1–2):143–153CrossRefGoogle Scholar
  54. 54.
    Arpornmaeklong P, Suwatwirote N, Pripatnanont P, Oungbho K (2007) Growth and differentiation of mouse osteoblasts on chitosan-collagen sponges. Int J Oral Maxillofac Surg 36(4):328–337CrossRefGoogle Scholar
  55. 55.
    Silva D et al (2013) Chitosan and platelet-derived growth factor synergistically stimulate cell proliferation in gingival fibroblasts. J Periodontal Res 48(6):677–686Google Scholar
  56. 56.
    Zhao R et al (2014) Electrospun chitosan/sericin composite nanofibers with antibacterial property as potential wound dressings. Int J Biol Macromol 68:92–97CrossRefGoogle Scholar
  57. 57.
    Costa EM et al (2014) Chitosan mouthwash: toxicity and in vivo validation. Carbohyd Polym 111:385–392CrossRefGoogle Scholar
  58. 58.
    Rao SB, Sharma CP (1997) Use of chitosan as a biomaterial: studies on its safety and hemostatic potential. J Biomed Mater Res 34(1):21–28CrossRefGoogle Scholar
  59. 59.
    Baldrick P (2010) The safety of chitosan as a pharmaceutical excipient. Regul Toxicol Pharmacol 56(3):290–299CrossRefGoogle Scholar
  60. 60.
    Gades MD, Stern JS (2003) Chitosan supplementation and fecal fat excretion in men. Obesity 11(5):683–688CrossRefGoogle Scholar
  61. 61.
    Ylitalo R et al (2002) Cholesterol-lowering properties and safety of chitosan. Arzneimittelforschung 52(01):1–7Google Scholar
  62. 62.
    Tamer TM, Valachová K, Mohyeldin MS, Soltes L (2016) Free radical scavenger activity of cinnamyl chitosan schiff base. J Appl Pharm Sci 6:130Google Scholar
  63. 63.
    Fujita M et al (2004) Inhibition of vascular prosthetic graft infection using a photocrosslinkable chitosan hydrogel. J Surg Res 121(1):135–140CrossRefGoogle Scholar
  64. 64.
    Eldin MSM, Soliman EA, Hashem AI, Tamer TM (2008) Antibacterial activity of chitosan chemically modified with new technique. J Trends Biomater Artif Organs 22(3):121–133Google Scholar
  65. 65.
    Chung Y-C, Chen C-Y (2008) Antibacterial characteristics and activity of acid-soluble chitosan. Biores Technol 99(8):2806–2814CrossRefGoogle Scholar
  66. 66.
    Ahmed S, Ikram S (2016) Chitosan based scaffolds and their applications in wound healing. Achievements Life Sci 10(1):27–37CrossRefGoogle Scholar
  67. 67.
    Shoji M et al (2006) Lipopolysaccharide stimulates the production of prostaglandin E2 and the receptor Ep4 in osteoblasts. Life Sci 78(17):2012–2018CrossRefGoogle Scholar
  68. 68.
    Grishin AV et al (2006) Lipopolysaccharide induces cyclooxygenase-2 in intestinal epithelium via a noncanonical P38 MAPK pathway. J Immunol 176(1):580–88 (Baltimore, Md. : 1950)CrossRefGoogle Scholar
  69. 69.
    Yang E-J et al (2010) Anti-inflammatory effect of chitosan oligosaccharides in RAW 264.7 cells. Open Life Sci 5:95CrossRefGoogle Scholar
  70. 70.
    Van Amersfoort ES, Van Berkel TJC, Kuiper J (2003) Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin Microbiol Rev 16(3):379–414CrossRefGoogle Scholar
  71. 71.
    Ma L et al (2016) Anti-inflammatory activity of chitosan nanoparticles carrying NF-KappaB/P65 antisense oligonucleotide in RAW264.7 macrophage stimulated by lipopolysaccharide. Colloids Surf B 142:297–306CrossRefGoogle Scholar
  72. 72.
    Tu J et al (2016) Chitosan nanoparticles reduce LPS-induced inflammatory reaction via inhibition of NF-KappaB pathway in Caco-2 cells. Int J Biol Macromol 86:848–856CrossRefGoogle Scholar
  73. 73.
    Naberezhnykh GA et al (2008) Interaction of chitosans and their N-acylated derivatives with lipopolysaccharide of gram-negative bacteria. Biochem Biokhim 73(4):432–441CrossRefGoogle Scholar
  74. 74.
    Rodrigues S, Dionisio M, Lopez CR, Grenha Ana (2012) Biocompatibility of chitosan carriers with application in drug delivery. J Funct Biomater 3(3):615–641CrossRefGoogle Scholar
  75. 75.
    Xu C et al (2012) Chitosan as a barrier membrane material in periodontal tissue regeneration. J Biomed Mater Res Part B Appl Biomater 100:1435–1443CrossRefGoogle Scholar
  76. 76.
    Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62(1):3–11CrossRefGoogle Scholar
  77. 77.
    Leite ÁJ, Caridade SG, Mano JF (2016) Synthesis and characterization of bioactive biodegradable chitosan composite spheres with shape memory capability. J Non-Cryst Solids 432:158–166CrossRefGoogle Scholar
  78. 78.
    Mollah MZI et al (2016) Biodegradable colour polymeric film (starch-chitosan) development: characterization for packaging materials. Open J Org Polym Mater 06:11–24CrossRefGoogle Scholar
  79. 79.
    Kozen BG et al (2008) An alternative hemostatic dressing: comparison of CELOX, HemCon, and QuikClot. Acad Emerg Med: Official J Soc Acad Emerg Med 15(1):74–81CrossRefGoogle Scholar
  80. 80.
    Balan V, Verestiuc L (2014) Strategies to improve chitosan hemocompatibility: a review. Eur Polym J 53Google Scholar
  81. 81.
    Pogorielov MV, Sikora VZ (2015) Chitosan as a hemostatic agent: current state. Eur J Med. Series B 2(1):24–33CrossRefGoogle Scholar
  82. 82.
    Whang HS et al (2005) Hemostatic agents derived from chitin and chitosan. J Macromol Sci Part C 45(4):309–323CrossRefGoogle Scholar
  83. 83.
    Boddupalli B, Mohammed Z, Nath R, Banji D (2010) Mucoadhesive drug delivery system: an overview. J Adv Pharm Technol Res 1(4):381–387CrossRefGoogle Scholar
  84. 84.
    Perchyonok VT et al (2014) Evaluation of nystatin containing chitosan hydrogels as potential dual action bio-active restorative materials: In: Puoci F (ed) Vitro approach. J Funct Biomater 5(4):259–72.
  85. 85.
    Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49(4):780–92. Scholar
  86. 86.
    Frykberg RG, Banks J (2015) Challenges in the treatment of chronic wounds. Adv Wound Care 4(9):560–582CrossRefGoogle Scholar
  87. 87.
    El-Feky GS, Sharaf SS, El Shafei A, Hegazy AA (2017) Using chitosan nanoparticles as drug carriers for the development of a silver sulfadiazine wound dressing. Carbohyd Polym 158:11–19CrossRefGoogle Scholar
  88. 88.
    Agnihotri S, Bajaj G, Mukherji S, Mukherji Soumyo (2015) Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: an enhanced and reusable antibacterial substrate without human cell cytotoxicity. Nanoscale 7(16):7415–7429CrossRefGoogle Scholar
  89. 89.
    Yasasvini S et al (2017) Topical hydrogel matrix loaded with simvastatin microparticles for enhanced wound healing activity. Mater Sci Eng C Mater Biol Appl 72:160–167CrossRefGoogle Scholar
  90. 90.
    Vedakumari WS et al (2017) Quercetin impregnated chitosan-fibrin composite scaffolds as potential wound dressing materials—fabrication, characterization and in vivo analysis. Eur J Pharm Sci: Official J Eur Fed Pharm Sci 97:106–112CrossRefGoogle Scholar
  91. 91.
    Gomathi K, Gopinath D, Rafiuddin Ahmed M, Jayakumar R (2003) Quercetin incorporated collagen matrices for dermal wound healing processes in rat. Biomaterials 24(16):2767–2772CrossRefGoogle Scholar
  92. 92.
    Veerapandian M, Seo Y-T, Yun K, Lee M-H (2014) Graphene oxide functionalized with silver@silica-polyethylene glycol hybrid nanoparticles for direct electrochemical detection of quercetin. Biosens Bioelectron 58:200–204CrossRefGoogle Scholar
  93. 93.
    Metwally AM, Omar AA, Harraz FM, El Sohafy SM (2010) Phytochemical investigation and antimicrobial activity of Psidium guajava L. leaves. Pharmacognosy Magazine 6(23):212–218CrossRefGoogle Scholar
  94. 94.
    Bhardwaj N, Kundu S (2011) Silk fibroin protein and chitosan polyelectrolyte complex porous scaffolds for tissue engineering applications. Carbohyd Polym 85:325–333CrossRefGoogle Scholar
  95. 95.
    Noorjahan SE, Sastry TP (2004) An in vivo study of hydrogels based on physiologically clotted fibrin-gelatin composites as wound-dressing materials. J Biomed Mater Res B Appl Biomater 71(2):305–312CrossRefGoogle Scholar
  96. 96.
    Romić MD et al (2016) Melatonin-loaded chitosan/Pluronic® F127 microspheres as in situ forming hydrogel: an innovative antimicrobial wound dressing. Eur J Pharm Biopharm 107:67–79. Scholar
  97. 97.
    Reiter RJ, Tan D-X, Fuentes-Broto L (2010) Melatonin: a multitasking molecule. Prog Brain Res 181:127–151CrossRefGoogle Scholar
  98. 98.
    Gomez-Florit M, Ramis JM, Monjo M (2013) Anti-fibrotic and anti-inflammatory properties of melatonin on human gingival fibroblasts in vitro. Biochem Pharmacol 86(12):1784–1790CrossRefGoogle Scholar
  99. 99.
    Drobnik J (2012) Wound healing and the effect of pineal gland and melatonin. J Exp Integr Med 2(1):3–14CrossRefGoogle Scholar
  100. 100.
    Sahib AS, Al-Jawad FH, Al-Kaisy AA (2009) Burns, endothelial dysfunction, and oxidative stress: the role of antioxidants. Annals Burns Fire Disasters 22(1):6–11.
  101. 101.
    Sahib AS, Al-Jawad FH, Alkaisy AA (2010) Effect of antioxidants on the incidence of wound infection in burn patients. Ann Burns Fire Disasters 23(4):199–205Google Scholar
  102. 102.
    Gopal A, Kant V, Gopalakrishnan A, Tandan SK, Kumar D (2014) Chitosan-based copper nanocomposite accelerates healing in excision wound model in rats. Eur J Pharmacol 731:8–19CrossRefGoogle Scholar
  103. 103.
    Fan X et al (2016) Nano-TiO2/collagen-chitosan porous scaffold for wound repairing. Int J Biol Macromol 91:15–22CrossRefGoogle Scholar
  104. 104.
    Verdier T, Coutand M, Bertron A, Roques C (2014) Antibacterial activity of TiO2 photocatalyst alone or in coatings on E. coli: the influence of methodological aspects. Coatings 4:670–686CrossRefGoogle Scholar
  105. 105.
    Macwan DP, Dave P, Chaturvedi S (2011) A review on nano-TiO2 sol–gel type syntheses and its applications. J Mater Sci 46:3669–3686CrossRefGoogle Scholar
  106. 106.
    Beer C et al (2012) Toxicity of silver nanoparticles—nanoparticle or silver ion? Toxicol Lett 208(3):286–292CrossRefGoogle Scholar
  107. 107.
    Lara HH, Ayala-Nunez NV, Ixtepan-Turrent L, Rodriguez-Padilla C (2010) Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol 8:1CrossRefGoogle Scholar
  108. 108.
    Wang X, Du Y, Liu H (2004) Preparation, characterization and antimicrobial activity of chitosan-Zn complex. Carbohyd Polym 56:21–26CrossRefGoogle Scholar
  109. 109.
    Darder M, Aranda P, Ruiz-Hitzky E (2007) Bionanocomposites: a new concept of ecological, bioinspired, and functional hybrid materials. Adv Mater 19:1309–1319CrossRefGoogle Scholar
  110. 110.
    Ding L et al (2017) Spongy bilayer dressing composed of chitosan–Ag nanoparticles and Chitosan-Bletilla striata polysaccharide for wound healing applications. Carbohyd Polym 157:1538–1547CrossRefGoogle Scholar
  111. 111.
    Ahmadi F, Oveisi Z, Samani SM, Amoozgar Z (2015) Chitosan based hydrogels: characteristics and pharmaceutical applications. Res Pharm Sci 10(1):1–16CrossRefGoogle Scholar
  112. 112.
    Luca L et al (2011) Injectable RhBMP-2-loaded chitosan hydrogel composite: osteoinduction at ectopic site and in segmental long bone defect. J Biomed Mater Res Part A 96:66–74CrossRefGoogle Scholar
  113. 113.
    Dai T, Tanaka M, Huang Y-Y, Hamblin MR (2011) Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Rev Anti-Infect Ther 9(7):857–879CrossRefGoogle Scholar
  114. 114.
    Chatterjee DK, Fong LS, Zhang Y (2008) Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev 60(15):1627–1637CrossRefGoogle Scholar
  115. 115.
    Chen C-P, Chen C-T, Tsai T (2012) Chitosan nanoparticles for antimicrobial photodynamic inactivation: characterization and in vitro investigation. Photochem Photobiol 88(3):570–576CrossRefGoogle Scholar
  116. 116.
    Chien H-F et al (2013) The use of chitosan to enhance photodynamic inactivation against Candida albicans and its drug-resistant clinical isolates. Int J Mol Sci 14(4):7445–7456. Scholar
  117. 117.
    Gupta A et al (2013) Shining light on nanotechnology to help repair and regeneration. Biotechnol Adv 31(5):607–631CrossRefGoogle Scholar
  118. 118.
    Sayyah SM, Essawy AA, El-Nggar AM (2015) Kinetic studies and grafting mechanism for methyl aniline derivatives onto chitosan: highly adsorptive copolymers for dye removal from aqueous solutions. React Funct Polym 96:50–60. Scholar
  119. 119.
    Singh G, Joyce E, Beddow J, Mason T (2012) Evaluation of antibacterial activity of ZnO nanoparticles coated sonochemically onto textile fabrics. World J Microbiol Biotechnol 2:106–120Google Scholar
  120. 120.
    Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3(2):163–175CrossRefGoogle Scholar
  121. 121.
    Çabuk M, Yusuf A, Yavuz M, Unal H (2014) Synthesis, characterization and antimicrobial activity of biodegradable conducting polypyrrole-graft-chitosan copolymer. Appl Surf Sci 318:168–175CrossRefGoogle Scholar
  122. 122.
    Shanmugam A, Kathiresan K, Nayak L (2016) Preparation, characterization and antibacterial activity of chitosan and phosphorylated chitosan from cuttlebone of Sepia kobiensis (Hoyle, 1885). Biotechnol Rep 9:25–30CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Amr A. Essawy
    • 1
    • 2
    Email author
  • Hassan Hefni
    • 3
  • A. M. El-Nggar
    • 4
  1. 1.Chemistry Department, Faculty of ScienceFayoum UniversityFayoumEgypt
  2. 2.Chemistry Department, College of ScienceJouf UniversitySakakaKingdom of Saudi Arabia
  3. 3.Petrochemicals DepartmentEgyptian Petroleum Research Institute (EPRI)CairoEgypt
  4. 4.Chemistry Department, Faculty of ScienceAl-Azhar UniversityCairoEgypt

Personalised recommendations