Advertisement

Synthesis, Characterization, and Applications of Hemicelluloses Based Eco-friendly Polymer Composites

  • Xinwen PengEmail author
  • Fan Du
  • Linxin Zhong
Chapter

Abstract

Hemicelluloses are widely available natural polysaccharides that present abundant functional groups (hydroxyl, carboxyl, and acetyl groups) on their backbones to act as an ideal candidate for chemical/physical functionalization. This review summarizes the synthesis and characterization of hemicelluloses-based polymer composites including products from different modifications (zero-dimensional), particles (zero-dimensional), films (two-dimensional), and gels (three-dimensional), aiming at improving the functional properties of hemicelluloses-based materials such as mechanical strength, water vapor permeability, oxygen permeability and more hydrophobicity. The hemicelluloses-based products are more preferable for specific use in heavy metal removal, dye adsorption, drug delivery and release, tissue engineering, biodegradable packaging and so forth. The perspectives of hemicelluloses in future composites and applications are also outlined.

Keywords

Hemicelluloses Polymer Composite Modification Particle Film Gel 

Abbreviations

EVOH

Ethylene vinyl alcohol

PVDC

Polyvinylidene chloride

3D

Three-dimensional

AGU

Anhydroglucose units

AcGGM/GGM

O-acetyl galactoglucomannans

DMF

N, N-dimethylformamide

DMA/LiCl

N, N-dimethylacetamide/lithium chloride

DMSO/THF

Dimethyl sulfoxide/tetrahydrofuran

DMAP

4-dimethylamino pyridine

NBS

N-bromosuccinimide

TEA

Triethylamine

DS

Degree of substitution

MSA

Methane sulfonic acid

[BMIM]Cl

1-butyl-3-methylimidazolium chloride

IL

Ionic liquid

LC

Lauroyl chloride

LH

Lauroylated hemicelluloses

HFIP

HEXAFLUOROISOPROPANOL/1, 1, 1, 3, 3, 3-hexafluoro-2-propanol

CDI

N, N’-carbonyldiimidazole

SET-LRP

Single-electron-transfer mediated living radical polymerization

AcGGM-SH

Thiolated O-acetyl galactoglucomannan

PEG-MA

Polyethylene glycol monomethacrylate

ETA

2, 3-epoxypropyltrimethylammonium chloride

QH

Quaternized hemicelluloses

MMT

Montmorillonite

NaH

Sodium hydride

BnGGM

Benzyl galactoglucomannan

TBAI

Tetrabutylammonium iodide

CHMAC

3-chloro-2-hydroxypropyltrimethylammonium chloride

GTMAC

Glycidyltrimethylammonium chloride

METAC

[2-(methacryloyloxy) ethyl] trimethylammonium chloride

HPMA

2-hydroxypropyltrimethylammonium

DME

2-hydroxypropyltrimethylammonium (HPMA), 1, 2-dimethoxyethane

PHL

Pre-hydrolysis liquor

GTMAC

Glycidyltrimethylammonium chloride

METAC

[2-(methacryloyloxy) ethyl] trimethylammonium chloride

MeGlcp-Xylan

O-acetyl-4-O-methylglucuronoxylan

WH

Wood hydrolysate

AG

Arabinogalactan

EDC/NHS

N-ethyl-N’-(3-dimethylamino)propyl carbodiimide hydroxide/N-hydroxysuccinimide

TA

Tyramine

HRP

260 purpurogallin unit/mg solid

DMT-MM

4-(4, 6-dimethoxy-1, 3, 5-triazin-2-yl)-4-methylmorpholinium chloride

CuAAC

Copper(I)-catalyzed azide-alkyne cycloaddition

AX

Arabinoxylan

AGX

Arabinoglucuronoxylan

[emim][Me2PO4]

1-ethyl-3-methylimidazolium dimethyl phosphate

[DBNH][OAc]

1, 5-diazabicyclo[4.3.0]non-5-enium acetate

[Amim]+Cl

1-allyl-3-methylimidazolium chloride

XylC6N3

Di-O-(6-azidohexanoyl)-xylan

PLLA

Poly(L-lactide)

PMDETA

N, N, N’, N’, N’’-pentamethyldiethylenetriamine

LLA

L-lactide

TBD

Triazabicyclodecene

PLA

Polylactide

AN

Acrylonitrile

MA

Methyl acrylate

AM

Acrylamide/acrylic amide

DMC

Methacryloyloxy ethyl trimethyl ammonium chloride

APMP

Alkaline peroxide mechanical pulping

MMA

Methyl methacrylate

NIPAM

N-isopropyl acrylamide

GMA

Glycidyl methacrylate

GM

Galactomannan

QCM-D

Galactomannan (GM), Quartz crystal microbalance with dissipation

TEMPO

2, 2, 6, 6-tetramethylpiperidine-1-oxyl

Cy

Cysteine

LOD

Limit of detection

AgNPs

Silver nanoparticles

PMP

Polymeric magnetic microparticles

MP

Magnetic microparticles

CMH

Carboxymethyl functionalized hemicellulose/carboxymethyl hemicellulose

Pd NPs

Palladium nanoparticles

XH

Xylan-type hemicelluloses

CKGM

Carboxymethyl Konjac glucomannan

CS

Chitosan

BSA

Bovine serum albumin

WVP

Water vapor permeability

OP

Oxygen permeability

PVA

Polyvinyl alcohol

HPKO

Hydrogenated palm kernel oil

HLBs

Hydrophilic-lipophilic balances

LDPE

Low-density polyethylene

DMA

Dynamic mechanical analysis

NCH

Chitin nanowhiskers

BH

Bleached hemicelluloses

BAH

Acetylated bleached hemicelluloses

NCC

Nanocrystalline cellulose

CNCC

Cationically modified NCC

HC/SB

Hemicelluloses/sorbitol

GTMAC

Glycidyltrimethylammonium chloride

HL

Hemicellulose/lignin

NFC

Nanofibrillated cellulose

MFC

Microfibrillated cellulose

CNFs

Cellulose nanofibers

CNT

Carbon nanotube

κ-car/LBG

Κ-carrageenan/locust bean

GA

Gum arabic

SA

Stearyl acrylate

SM

Stearyl methacrylate

EB

Electron beam

PLGA

Poly(lactic-co-glycolic acid)

TFAA

Trifluoroacetic anhydride

PET

Polyethylene terephthalate

CHPS

3-Chloro-2-hydroxypropyl sulfonic acid

SCHMAC

(S)-(-)-(3-chloro-2-hydroxypropyl)-trimethylammonium chloride

CHPMAC

3-chloro-2-hydroxypropyl-trimethylammonium chloride

Ra

Roughness value

Seq

Equilibrium swelling ratio

HEMA

2-hydroxyethyl methacrylate

HEMA-Im

2-[(1- imidazolyl)formyloxy]ethyl methacrylate

AnMan5A

Enzyme β-mannanase

M-AcGGM

Methacrylated AcGGM

CM-AcGGM

Maleic anhydride-modified M-AcGGM

AA

Acrylic acid

CA

Citric acid

SHP

Sodium hypophosphite

NIPAAm

N-isopropylacrylamide

MBA

N, N’-methylenebis-acrylamide

DMAP/NMP

2, 2-dimethoxy-2-phenylacetophenone/N-methyl pyrrolidone

ACX

Acylated xylan

Hce-MA/AHC

Acylated hemicellulose

LCST

Lower critical solution temperature

APS/TEMDA

Ammonium persulfate/N, N, N′, N′-tetramethyl-ethane-1, 2-diamine

MeDMA

[2-(methacryloyloxy) ethyl] trimethylammonium chloride

ECH

Epichlorohydrin

GDEP

Glow discharge electrolysis plasma

MFRHH

Magnetic field-responsive hemicelluloses-based hydrogel

SRs

Swelling ratios

ECH

Electrically conductive hydrogels

ECHH

Electrically conductive hemicellulose hydrogel

AP

Aniline pentamer

C-AcGGM

Carboxylated AcGGM

AT

Aniline tetramer

SRHMGs

Stimuli-responsive hemicellulose microgels

CMCH

Carboxymethyl chitosan-hemicellulose

CHNT

Carboxymethyl chitosan-hemicellulose network

SDS

Sodium dodecyl sulfate

DTPA

Diethylene triamine pentaacetic acid

DHC

Dialdehyde hemicelluloses

CNF

Cellulose nanofibrils

CNC

Nanocrystalline cellulose

NFC

Nanofibrillated cellulose

IPNs

Interpenetrating polymer networks

MA-CMC

Methacrylated carboxymethylcellulose

SWH

Softwood hemicellulose hydrolysate

kC-xylan-PVP

Kappa-carrageenan/xylan/polyvinylpyrrolidone

KPS

Sodium persulphate

PEG-PPG-PEG

Poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol)

IA

Itaconic acid

PAA

Poly(amidoamine)

GO

Graphene oxide

PAM

Polymerized acrylamide

MW-CNTs

Multiwall carbon nanotube

MB

Methylene blue

PEGDE

Polyethylene glycol diglycidyl ether

References

  1. 1.
    Thakur V KT, hakur M K (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydrate Polymers, 109(13): 102–117CrossRefGoogle Scholar
  2. 2.
    Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834CrossRefGoogle Scholar
  3. 3.
    Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in Green Polymer Composites from Lignin for Multifunctional Applications: A Review. Acs Sustainable Chemistry & Engineering 2(5):1072–1092CrossRefGoogle Scholar
  4. 4.
    Mikkonen KS (2013) Recent Studies on Hemicellulose-Based Blends. Composites and Nanocomposites. Springer, Berlin Heidelberg, pp 313–336Google Scholar
  5. 5.
    Hansen NM, Plackett D (2008) Sustainable films and coatings from hemicelluloses: a review. Biomacromol 9(6):1493–1505CrossRefGoogle Scholar
  6. 6.
    Shukla SK, Mishra AK, Arotiba OA, Mamba BB (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 59(4):46CrossRefGoogle Scholar
  7. 7.
    Thakur V KThakur M K (2014) Recent Advances in Graft Copolymerization and Applications of Chitosan: A Review. Acs Sustainable Chemistry & Engineering, 2(12)CrossRefGoogle Scholar
  8. 8.
    Rahmat AR, Wan AWAR, Sin LT, Yussuf AA (2009) Approaches to improve compatibility of starch filled polymer system: A review. Mater Sci Eng, C 29(8):2370–2377CrossRefGoogle Scholar
  9. 9.
    Avérous L, Halley PJ (2009) Biocomposites based on plasticized starch. Biofuels, Bioprod Biorefin 3(3):329–343CrossRefGoogle Scholar
  10. 10.
    Thakur VK, Thakur MK (2014) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82(22):1–15CrossRefGoogle Scholar
  11. 11.
    Farhat W, Venditti RA, Hubbe M et al (2017) A Review of Water-Resistant Hemicellulose-Based Materials: Processing and Applications. Chemsuschem 10(2):305–323CrossRefGoogle Scholar
  12. 12.
    Ibn Yaich A, Edlund UAlbertsson A C (2017) Transfer of Biomatrix/Wood Cell Interactions to Hemicellulose-Based Materials to Control Water Interaction. Chemical Review, 117(12): 8177–8207CrossRefGoogle Scholar
  13. 13.
    Thakur VK, Thakur MK (2015) Eco-friendly Polymer Nanocomposites. Advanced Structured Materials, Springer, IndiaCrossRefGoogle Scholar
  14. 14.
    Iwata T (2015) Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew Chem Int Ed Engl 54(11):3210–3215CrossRefGoogle Scholar
  15. 15.
    Ayoub A, Venditti RA, Pawlak JJ, Salam A, Hubbe MA (2013) Novel Hemicellulose-Chitosan Biosorbent for Water Desalination and Heavy Metal Removal. ACS Sustainable Chemistry & Engineering 1(9):1102–1109CrossRefGoogle Scholar
  16. 16.
    Dax D, Chavez MS, Xu C et al (2014) Cationic hemicellulose-based hydrogels for arsenic and chromium removal from aqueous solutions. Carbohydrate Polymer 111:797–805CrossRefGoogle Scholar
  17. 17.
    Ferrari E, Ranucci E, Edlund U, Albertsson AC (2015) Design of renewable poly(amidoamine)/hemicellulose hydrogels for heavy metal adsorption. J Appl Polym Sci 132(12):41695Google Scholar
  18. 18.
    Peng XW, Zhong LX, Ren JL, Sun RC (2012) Highly effective adsorption of heavy metal ions from aqueous solutions by macroporous xylan-rich hemicelluloses-based hydrogel. J Agric Food Chem 60(15):3909–3916CrossRefGoogle Scholar
  19. 19.
    Wu S, Kan J, Dai X et al (2017) Ternary carboxymethyl chitosan-hemicellulose-nanosized TiO2 composite as effective adsorbent for removal of heavy metal contaminants from water. Fibers and Polymers 18(1):22–32CrossRefGoogle Scholar
  20. 20.
    Wu SP, Dai XZ, Kan JR, Shilong FD, Zhu MY (2017) Fabrication of carboxymethyl chitosan–hemicellulose resin for adsorptive removal of heavy metals from wastewater. Chin Chem Lett 28(3):625–632CrossRefGoogle Scholar
  21. 21.
    Sun XF, Gan Z, Jing Z et al (2015) Adsorption of Methylene Blue on Hemicellulose-Based Stimuli-Responsive Porous Hydrogel. J Appl Polym Sci 132(10):41606CrossRefGoogle Scholar
  22. 22.
    Cheng HL, Feng QH, Liao CA et al (2016) Removal of methylene blue with hemicellulose/clay hybrid hydrogels. Chin J Polym Sci 34(6):709–719CrossRefGoogle Scholar
  23. 23.
    Farhat W, Venditti R, Mignard N et al (2017) Polysaccharides and lignin based hydrogels with potential pharmaceutical use as a drug delivery system produced by a reactive extrusion process. Int J Biol Macromol 104:564–575CrossRefGoogle Scholar
  24. 24.
    Gao C, Ren J, Zhao C et al (2016) Xylan-based temperature/pH sensitive hydrogels for drug controlled release. Carbohydr Polymer 151:189–197CrossRefGoogle Scholar
  25. 25.
    Sun XF, Wang HH, Jing ZX, Mohanathas R (2013) Hemicellulose-based pH-sensitive and biodegradable hydrogel for controlled drug delivery. Carbohydr Polymer 92(2):1357–1366CrossRefGoogle Scholar
  26. 26.
    Zhao W, Odelius K, Edlund U, Zhao CAlbertsson A C (2015) In Situ Synthesis of Magnetic Field-Responsive Hemicellulose Hydrogels for Drug Delivery. Biomacromolecules, 16(8): 2522–8CrossRefGoogle Scholar
  27. 27.
    Chen GG, Qi XM, Guan Y et al (2016) High Strength Hemicellulose-Based Nanocomposite Film for Food Packaging Applications. ACS Sustainable Chemistry & Engineering 4(4):1985–1993CrossRefGoogle Scholar
  28. 28.
    Laine C, Harlin A, Hartman J et al (2013) Hydroxyalkylated xylans – Their synthesis and application in coatings for packaging and paper. Ind Crops Prod 44:692–704CrossRefGoogle Scholar
  29. 29.
    Tatar F, Tunç MT, Dervisoglu M, Cekmecelioglu D, Kahyaoglu T (2014) Evaluation of hemicellulose as a coating material with gum arabic for food microencapsulation. Food Res Int 57:168–175CrossRefGoogle Scholar
  30. 30.
    Shen J, Fatehi PNi Y (2014) Biopolymers for surface engineering of paper-based products. Cellulose, 21(5): 3145–3160CrossRefGoogle Scholar
  31. 31.
    Nguyen QA, Tucker MP, Keller FA, Eddy FP (2000) Two-stage dilute-acid pretreatment of softwoods. Appl Biochem Biotechnol 84–86(1–9):561–576CrossRefGoogle Scholar
  32. 32.
    Egüés I, Sanchez C, Mondragon I, Labidi J (2012) Effect of alkaline and autohydrolysis processes on the purity of obtained hemicelluloses from corn stalks. Biores Technol 103(1):239–248CrossRefGoogle Scholar
  33. 33.
    Isao Hasegawa, Kazuhide Tabata, Osamu Okuma, AKazuhiro Mae (2004) New pretreatment methods combining a hot water treatment and water/acetone extraction for thermo-chemical conversion of biomass. Energy & Fuels An American Chemical Society Journal, 18(3): 755–760CrossRefGoogle Scholar
  34. 34.
    And MP, Zacchi G (2003) Extraction of Hemicellulosic Oligosaccharides from Spruce Using Microwave Oven or Steam Treatment. Biomacromol 4(3):617CrossRefGoogle Scholar
  35. 35.
    Froschauer C, Hummel M, Iakovlev M et al (2013) Separation of Hemicellulose and Cellulose from Wood Pulp by Means of Ionic Liquid/Cosolvent Systems. Biomacromol 14(6):1741–1750CrossRefGoogle Scholar
  36. 36.
    Mesbah M, Shahsavari S, Soroush E, Rahaei N, Rezakazemi M (2018) Accurate prediction of miscibility of CO2 and supercritical CO2 in ionic liquids using machine learning. Journal of CO2 Utilization, 25: 99–107Google Scholar
  37. 37.
    Razavi SMR, Rezakazemi M, Albadarin AB, Shirazian S (2016) Simulation of CO2 absorption by solution of ammonium ionic liquid in hollow-fiber contactors. Chem Eng Process 108:27–34CrossRefGoogle Scholar
  38. 38.
    Gould JM (1984) Alkaline peroxide delignification of agricultural residues to enhance enzymatic saccharification. Biotechnol Bioeng 26(1):46–52CrossRefGoogle Scholar
  39. 39.
    Schmidt AS, Thomsen AB (1998) Optimization of wet oxidation pretreatment of wheat straw. Biores Technol 64(2):139–151CrossRefGoogle Scholar
  40. 40.
    Li H, Qu Y, Yang Y, Chang S, Xu J (2016) Microwave irradiation–A green and efficient way to pretreat biomass. Biores Technol 199:34–41CrossRefGoogle Scholar
  41. 41.
    Chum H L, Johnson D K, Black S et al (1988) Organosolv pretreatment for enzymatic hydrolysis of poplars: I. Enzyme hydrolysis of cellulosic residues. Biotechnology & Bioengineering, 31(7): 643–649CrossRefGoogle Scholar
  42. 42.
    Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30(5):279–291CrossRefGoogle Scholar
  43. 43.
    Hu L, Du M, Zhang J (2018) Hemicellulose-Based Hydrogels Present Status and Application Prospects: A Brief Review. Open Journal of Forestry 08(01):15–28CrossRefGoogle Scholar
  44. 44.
    Uraki Y, Koda K (2015) Utilization of wood cell wall components. Journal of Wood Science 61(5):447–454CrossRefGoogle Scholar
  45. 45.
    Gandini A (2011) The irruption of polymers from renewable resources on the scene of macromolecular science and technology. Green Chem 13(5):1061CrossRefGoogle Scholar
  46. 46.
    Cunha A G, Gandini A (2010) Turning polysaccharides into hydrophobic materials: a critical review. Part 2. Hemicelluloses, chitin/chitosan, starch, pectin and alginates. Cellulose, 17(6): 1045–1065CrossRefGoogle Scholar
  47. 47.
    Thomas S, Visakh P M, Mathew A P (2013) Advances in Natural Polymers. Advanced Structured Materials. Vol. 18. springer. p 216–217Google Scholar
  48. 48.
    Belmokaddem FZ, Pinel C, Huber P, Petit Conil M, Perez Dda S (2011) Green synthesis of xylan hemicellulose esters. Carbohyd Res 346(18):2896–2904CrossRefGoogle Scholar
  49. 49.
    Peng XW, Ren JL, Sun RC (2010) Homogeneous esterification of xylan-rich hemicelluloses with maleic anhydride in ionic liquid. Biomacromol 11(12):3519–3524CrossRefGoogle Scholar
  50. 50.
    Zhang LM, Yuan TQ, Xu F, Sun RC (2013) Enhanced hydrophobicity and thermal stability of hemicelluloses by butyrylation in [BMIM]Cl ionic liquid. Ind Crops Prod 45:52–57CrossRefGoogle Scholar
  51. 51.
    Sun RC, Fang JM, Tomkinson J (2000) Stearoylation of hemicelluloses from wheat straw. Polym Degrad Stab 67(2):345–353CrossRefGoogle Scholar
  52. 52.
    Sun XF, Sun RC, Sun JX (2004) Oleoylation of sugarcane bagasse hemicelluloses usingN-bromosuccinimide as a catalyst. J Sci Food Agric 84(8):800–810CrossRefGoogle Scholar
  53. 53.
    Wang HT, Yuan TQ, Meng LJ et al (2012) Structural and thermal characterization of lauroylated hemicelluloses synthesized in an ionic liquid. Polym Degrad Stab 97(11):2323–2330CrossRefGoogle Scholar
  54. 54.
    Sun R, Fanga JM, Tomkinson J, Hill CAS (1999) Esterification of hemicelluloses from poplar chips in homogenous solution of N, N-dimethylformamide/lithium chloride. J Wood Chem Technol 19(4):287–306CrossRefGoogle Scholar
  55. 55.
    Sun RC, Fang JM, Tomkinson J, Geng ZC, Liu JC (2011) Fractional isolation, physico-chemical characterization and homogeneous esterification of hemicelluloses from fast-growing poplar wood. Paper Chemicals 44(1):29–39Google Scholar
  56. 56.
    Fundador N G V, Enomoto-Rogers Y, Takemura AIwata T (2012) Syntheses and characterization of xylan esters. Polymer 53(18):3885–3893CrossRefGoogle Scholar
  57. 57.
    Daus S, Heinze T (2010) Xylan-based nanoparticles: prodrugs for ibuprofen release. Macromol Biosci 10(2):211–220CrossRefGoogle Scholar
  58. 58.
    Kisonen V, Xu C, Bollström R et al (2014) O-acetyl galactoglucomannan esters for barrier coatings. Cellulose 21(6):4497–4509CrossRefGoogle Scholar
  59. 59.
    Buchanan CM, Buchanan NL, Debenham JS et al (2003) Preparation and characterization of arabinoxylan esters and arabinoxylan ester/cellulose ester polymer blends. Carbohyd Polym 52(4):345–357CrossRefGoogle Scholar
  60. 60.
    Voepel J, Edlund U, Albertsson A C, Percec V (2011) Hemicellulose-based multifunctional macroinitiator for single-electron-transfer mediated living radical polymerization. biomacromolecules, 12(1): 253–9CrossRefGoogle Scholar
  61. 61.
    Wrigstedt P, Kylli P, Pitkanen L et al (2010) Synthesis and antioxidant activity of hydroxycinnamic acid xylan esters. J Agric Food Chem 58(11):6937–6943CrossRefGoogle Scholar
  62. 62.
    Maleki L, Edlund U, Albertsson AC (2015) Thiolated hemicellulose as a versatile platform for one-pot click-type hydrogel synthesis. Biomacromol 16(2):667–674CrossRefGoogle Scholar
  63. 63.
    Ren JL, Peng F, Sun RC (2008) Preparation of Hemicellulosic Derivatives with Bifunctional Groups in Different Media. J Agric Food Chem 56(23):11209–11216CrossRefGoogle Scholar
  64. 64.
    Peng X, Ren JSun R (2011) An efficient method for the synthesis of hemicellulosic derivatives with bifunctional groups in butanol/water medium and their rheological properties. Carbohydrate Polymers, 83(4): 1922–1928CrossRefGoogle Scholar
  65. 65.
    Guan Y, Zhang B, Tan X et al (2014) Organic-Inorganic Composite Films Based on Modified Hemicelluloses with Clay Nanoplatelets. ACS Sustainable Chemistry & Engineering 2(7):1811–1818CrossRefGoogle Scholar
  66. 66.
    Rezakazemi M, Sadrzadeh M, Mohammadi T, Matsuura T (2017) Methods for the Preparation of Organic-Inorganic Nanocomposite Polymer Electrolyte Membranes for Fuel Cells. In: Electrolyte Organic-Inorganic Composite Polymer (ed) Inamuddin D, Mohammad AAsiri A M, Inamuddin D, Mohammad AAsiri A M, Inamuddin D, Mohammad AAsiri A Ms. Membranes. Springer International Publishing, Cham, pp 311–325Google Scholar
  67. 67.
    Bigand V, Pinel C, Da Silva Perez D et al (2011) Cationisation of galactomannan and xylan hemicelluloses. Carbohyd Polym 85(1):138–148CrossRefGoogle Scholar
  68. 68.
    Ren JL, Sun RC, Liu CF (2007) Etherification of hemicelluloses from sugarcane bagasse. J Appl Polym Sci 105(6):3301–3308CrossRefGoogle Scholar
  69. 69.
    Fang JM, Fowler P, Tomkinson J, Hill CAS (2002) Preparation and characterisation of methylated hemicelluloses from wheat straw. Carbohyd Polym 47(3):285–293CrossRefGoogle Scholar
  70. 70.
    Hartman J, Annchristine Albertsson A, Sjöberg J (2006) Surface- and Bulk-Modified Galactoglucomannan Hemicellulose Films and Film Laminates for Versatile Oxygen Barriers. Biomacromolecules, 7(6): 1983CrossRefGoogle Scholar
  71. 71.
    Ren JL, Peng XW, Zhong LX, Peng F, Sun RC (2012) Novel hydrophobic hemicelluloses: synthesis and characteristic. Carbohydrate Polymer 89(1):152–157CrossRefGoogle Scholar
  72. 72.
    Pahimanolis N, Kilpelainen P, Master E, Ilvesniemi H, Seppala J (2015) Novel thiol- amine- and amino acid functional xylan derivatives synthesized by thiol-ene reaction. Carbohydrate Polymer 131:392–398CrossRefGoogle Scholar
  73. 73.
    Liu Z, Ni Y, Fatehi P, Saeed A (2011) Isolation and cationization of hemicelluloses from pre-hydrolysis liquor of kraft-based dissolving pulp production process. Biomass Bioenerg 35(5):1789–1796CrossRefGoogle Scholar
  74. 74.
    Schwikal K, Heinze T, Ebringerová A, Petzold K (2005) Cationic Xylan Derivatives with High Degree of Functionalization. Macromolecular Symposia 232(1):49–56CrossRefGoogle Scholar
  75. 75.
    Kisonen V, Xu C, Eklund P et al (2014) Cationised O-acetyl galactoglucomannans: synthesis and characterisation. Carbohydrate Polymer 99:755–764CrossRefGoogle Scholar
  76. 76.
    Wang S, Hou Q, Kong F, Fatehi P (2015) Production of cationic xylan-METAC copolymer as a flocculant for textile industry. Carbohydrate Polymer 124:229–236CrossRefGoogle Scholar
  77. 77.
    Kong WQ, Ren JL, Wang S, Li MF, Sun RC (2014) A promising strategy for preparation of cationic xylan by environment-friendly semi-dry oven process. Fibers and Polymers 15(5):943–949CrossRefGoogle Scholar
  78. 78.
    Ren JL, Peng F, Sun RC et al (2008) Synthesis of cationic hemicellulosic derivatives with a low degree of substitution in dimethyl sulfoxide media. J Appl Polym Sci 109(4):2711–2717CrossRefGoogle Scholar
  79. 79.
    Ibn Yaich A, Edlund UAlbertsson A C (2015) Enhanced formability and mechanical performance of wood hydrolysate films through reductive amination chain extension. Carbohydrate Polymer, 117: 346–54CrossRefGoogle Scholar
  80. 80.
    Dax D, Eklund P, Hemming J et al (2013) Amphiphilic spruce galactoglucomannan derivatives based on naturally-occurring fatty acids. BioResources 8(3):3771CrossRefGoogle Scholar
  81. 81.
    Daus S, Elschner T, Heinze T (2010) Towards unnatural xylan based polysaccharides: reductive amination as a tool to access highly engineered carbohydrates. Cellulose 17(4):825–833CrossRefGoogle Scholar
  82. 82.
    Ehrenfreundkleinman T, Gazit Z, Gazit D et al (2002) Synthesis and biodegradation of arabinogalactan sponges prepared by reductive amination. Biomaterials 23(23):4621–4631CrossRefGoogle Scholar
  83. 83.
    Leppänen AS, Xu C, Eklund P et al (2014) Targeted functionalization of spruce O-acetyl galactoglucomannans—2,2,6,6-tetramethylpiperidin-1-oxyl-oxidation and carbodiimide-mediated amidation. J Appl Polym Sci 130(5):3122–3129CrossRefGoogle Scholar
  84. 84.
    Kuzmenko V, Hagg D, Toriz GGatenholm P (2014) In situ forming spruce xylan-based hydrogel for cell immobilization. Carbohydrate Polymer, 102: 862–8CrossRefGoogle Scholar
  85. 85.
    MacCormick B, Vuong TV, Master ER (2018) Chemo-enzymatic Synthesis of Clickable Xylo-oligosaccharide Monomers from Hardwood 4-O-Methylglucuronoxylan. Biomacromol 19(2):521–530CrossRefGoogle Scholar
  86. 86.
    Fundador N G V, Enomoto-Rogers Y, Takemura AIwata T (2012) Acetylation and characterization of xylan from hardwood kraft pulp. Carbohyd Polym 87(1):170–176CrossRefGoogle Scholar
  87. 87.
    Sun RC, Fang JM, Tomkinson J, Jones GL (1999) Acetylation of wheat straw hemicelluloses in N, N-dimethylacetamide/LiCl solvent system. Ind Crops Prod 10(3):209–218CrossRefGoogle Scholar
  88. 88.
    Sun XF, Sun RC, Zhao L, Sun JX (2010) Acetylation of sugarcane bagasse hemicelluloses under mild reaction conditions by using NBS as a catalyst. J Appl Polym Sci 92(1):53–61CrossRefGoogle Scholar
  89. 89.
    Ren J L, Sun R C, Liu C F, Cao Z NLuo W (2007) Acetylation of wheat straw hemicelluloses in ionic liquid using iodine as a catalyst. Carbohydrate Polymers, 70(4): 406–414CrossRefGoogle Scholar
  90. 90.
    Stepan AM, King AWT, Kakko T et al (2013) Fast and highly efficient acetylation of xylans in ionic liquid systems. Cellulose 20(6):2813–2824CrossRefGoogle Scholar
  91. 91.
    Gröndahl M, Teleman A, Gatenholm P (2003) Effect of acetylation on the material properties of glucuronoxylan from aspen wood. Carbohyd Polym 52(4):359–366CrossRefGoogle Scholar
  92. 92.
    Ayoub A, Venditti RA, Pawlak JJ, Sadeghifar H, Salam A (2013) Development of an acetylation reaction of switchgrass hemicellulose in ionic liquid without catalyst. Ind Crops Prod 44:306–314CrossRefGoogle Scholar
  93. 93.
    Dong L, Hu H, Yang S, Cheng F (2014) Grafted copolymerization modification of hemicellulose directly in the alkaline peroxide mechanical pulping (APMP) effluent and its surface sizing effects on corrugated paper. Ind Eng Chem Res 53(14):6221–6229CrossRefGoogle Scholar
  94. 94.
    Enomoto-Rogers Y, Iwata T (2012) Synthesis of xylan-graft-poly(L-lactide) copolymers via click chemistry and their thermal properties. Carbohyd Polym 87(3):1933–1940CrossRefGoogle Scholar
  95. 95.
    Edlund U, Albertsson A-C (2014) A controlled radical polymerization route to polyepoxidated grafted hemicellulose materials. Polimery 59(01):60–65CrossRefGoogle Scholar
  96. 96.
    Saadatmand S, Edlund U, Albertsson A-C (2011) Compatibilizers of a purposely designed graft copolymer for hydrolysate/PLLA blends. Polymer 52(21):4648–4655CrossRefGoogle Scholar
  97. 97.
    Persson J, Dahlman OAlbertsson A C (2012) Birch xylan grafted with pla branches of predictable length. Bioresources, 7(3): 3640–3655Google Scholar
  98. 98.
    Fanta GF, Burr RC, Doane WM (1982) Graft polymerization of acrylonitrile and methyl acrylate onto hemicellulose. J Appl Polym Sci 27(11):4239–4250CrossRefGoogle Scholar
  99. 99.
    Voepel J, Edlund U, Albertsson A-C (2011) A versatile single-electron-transfer mediated living radical polymerization route to galactoglucomannan graft-copolymers with tunable hydrophilicity. J Polym Sci, Part A: Polym Chem 49(11):2366–2372CrossRefGoogle Scholar
  100. 100.
    Edlund U, Rodriguez-Emmenegger C, Brynda E, Albersson A-C (2012) Self-assembling zwitterionic carboxybetaine copolymers via aqueous SET-LRP from hemicellulose multi-site initiators. Polymer Chemistry 3(10):2920CrossRefGoogle Scholar
  101. 101.
    O’Malley J J, Marchessault R H (1966) Characterization of Graft Copolymers of Methylated Xylan and Polystyrene. J.phys.chem, 70(10): 3235–3240CrossRefGoogle Scholar
  102. 102.
    Parikka K, Leppanen AS, Xu C et al (2012) Functional and anionic cellulose-interacting polymers by selective chemo-enzymatic carboxylation of galactose-containing polysaccharides. Biomacromol 13(8):2418–2428CrossRefGoogle Scholar
  103. 103.
    Parikka K, Leppanen AS, Pitkanen L et al (2010) Oxidation of polysaccharides by galactose oxidase. J Agric Food Chem 58(1):262–271CrossRefGoogle Scholar
  104. 104.
    Leppanen AS, Xu C, Parikka K et al (2014) Targeted allylation and propargylation of galactose-containing polysaccharides in water. Carbohydrate Polymer 100:46–54CrossRefGoogle Scholar
  105. 105.
    Song X, Hubbe MA (2014) TEMPO-mediated oxidation of oat beta-D-glucan and its influences on paper properties. Carbohydrate Polymer 99:617–623CrossRefGoogle Scholar
  106. 106.
    Kohnke T, Elder T, Theliander H, Ragauskas AJ (2014) Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels. Carbohydrate Polymer 100:24–30CrossRefGoogle Scholar
  107. 107.
    Chemin M, Rakotovelo A, Ham-Pichavant F et al (2016) Periodate oxidation of 4-O-methylglucuronoxylans: Influence of the reaction conditions. Carbohydrate Polymer 142:45–50CrossRefGoogle Scholar
  108. 108.
    Ehrenfreund-Kleinman T, Domb A JGolenser J (2003) Polysaccharide scaffolds prepared by crosslinking of polysaccharides with chitosan or proteins for cell growth. Journal of Bioactive & Compatible Polymers, 18(5): 323–338Google Scholar
  109. 109.
    Luo YQ, Shen SQ, Luo JW, Wang XY, Sun RC (2015) Green synthesis of silver nanoparticles in xylan solution via Tollens reaction and their detection for Hg2+. Nanoscale 7(2):690–700CrossRefGoogle Scholar
  110. 110.
    Luo Y, Shen Z, Liu P, Zhao L, Wang X (2016) Facile fabrication and selective detection for cysteine of xylan/Au nanoparticles composite. Carbohydrate Polymer 140:122–128CrossRefGoogle Scholar
  111. 111.
    Peng H, Yang A, Xiong J (2013) Green, microwave-assisted synthesis of silver nanoparticles using bamboo hemicelluloses and glucose in an aqueous medium. Carbohydrate Polymer 91(1):348–355CrossRefGoogle Scholar
  112. 112.
    Silva AK, da Silva EL, Oliveira EE et al (2007) Synthesis and characterization of xylan-coated magnetite microparticles. Int J Pharm 334(1–2):42–47CrossRefGoogle Scholar
  113. 113.
    Wu CY, Peng XW, Zhong LX, Li XH, Sun RC (2016) Green synthesis of palladium nanoparticles via branched polymers: a bio-based nanocomposite for C-C coupling reactions. RSC Advances 6(38):32202–32211CrossRefGoogle Scholar
  114. 114.
    Chen W, Zhong LX, Peng XW, Lin JH, Sun RC (2013) Xylan-type hemicelluloses supported terpyridine–palladium(II) complex as an efficient and recyclable catalyst for Suzuki-Miyaura reaction. Cellulose 21(1):125–137CrossRefGoogle Scholar
  115. 115.
    Chen W, Zhong LX, Peng XW et al (2014) Xylan-type hemicellulose supported palladium nanoparticles: a highly efficient and reusable catalyst for the carbon-carbon coupling reactions. Catal Sci Technol 4(5):1426–1435CrossRefGoogle Scholar
  116. 116.
    Du J, Sun R, Zhang S et al (2004) Novel Polyelectrolyte Carboxymethyl Konjac Glucomannan-Chitosan Nanoparticles for Drug Delivery. Macromol Rapid Commun 25(9):954–958CrossRefGoogle Scholar
  117. 117.
    Heinze T, Petzold KHornig S (2008) Novel nanoparticles based on xylan. Cellulose Chemistry & Technology, 41(1): 13–18Google Scholar
  118. 118.
    Garcia RB, Jr TN, Praxedes AKC et al (2001) Preparation of micro and nanoparticles from corn cobs xylan. Polym Bull 46(5):371–379CrossRefGoogle Scholar
  119. 119.
    D. Phan The, F. Debeaufort, †,‡ C. Péroval et al (2002) Arabinoxylan-Lipid-Based Edible Films and Coatings. 3. Influence of Drying Temperature on Film Structure and Functional Properties. Journal of Agricultural & Food Chemistry, 50(8): 2423–8CrossRefGoogle Scholar
  120. 120.
    Péroval C, Debeaufort F, Despré DVoilley A (2002) Edible arabinoxylan-based films. 1. Effects of lipid type on water vapor permeability, film structure, and other physical characteristics. J Agric Food Chem, 50 (14): 3977–83CrossRefGoogle Scholar
  121. 121.
    Phan T D, Péroval C, Debeaufort F et al (2002) Arabinoxylan-lipids-based edible films and coatings. 2. Influence of sucroester nature on the emulsion structure and film properties. Journal of Agricultural & Food Chemistry, 50(2): 266–272Google Scholar
  122. 122.
    Hartman J, Albertsson A-C, Lindblad M SSjöberg J (2006) Oxygen barrier materials from renewable sources: Material properties of softwood hemicellulose-based films. Journal of Applied Polymer Science, 100(4): 2985–2991CrossRefGoogle Scholar
  123. 123.
    Zhang PWhistler R L (2004) Mechanical properties and water vapor permeability of thin film from corn hull arabinoxylan. Journal of Applied Polymer Science, 93(6): 2896–2902CrossRefGoogle Scholar
  124. 124.
    Chen GG, Qi XM, Li MP et al (2015) Hemicelluloses/montmorillonite hybrid films with improved mechanical and barrier properties. Scientific Reports 5:16405CrossRefGoogle Scholar
  125. 125.
    Liu Y X, Sun B, Wang Z LNi Y H (2016) Mechanical and Water Vapor Barrier Properties of Bagasse Hemicellulose-based Films. Bioresources, 11(2): 4226–4236Google Scholar
  126. 126.
    Gordobil O, Egues I, Urruzola ILabidi J (2014) Xylan-cellulose films: improvement of hydrophobicity, thermal and mechanical properties. Carbohydrate Polymer, 112: 56–62CrossRefGoogle Scholar
  127. 127.
    Hu S, Gu J, Jiang F, Hsieh YL (2016) Holistic rice straw nanocellulose and hemicelluloses/lignin composite films. ACS Sustainable Chemistry & Engineering 4(3):728–737CrossRefGoogle Scholar
  128. 128.
    Huang B, Tang Y, Pei Q et al (2017) Hemicellulose-Based Films Reinforced with Unmodified and Cationically Modified Nanocrystalline Cellulose. Journal of Polymers and the EnvironmentGoogle Scholar
  129. 129.
    Kisonen V, Prakobna K, Xu C et al (2015) Composite films of nanofibrillated cellulose and O-acetyl galactoglucomannan (GGM) coated with succinic esters of GGM showing potential as barrier material in food packaging. Journal of Materials Science 50(8):3189–3199CrossRefGoogle Scholar
  130. 130.
    MA R X, Pekarovicova A, D. Fleming III PHusovska V (2017) Preparation and characterization of hemicellulose-based printable films. Cellulose Chem. Technol., 51(9–10): 939-948Google Scholar
  131. 131.
    Mikkonen KS, Stevanic JS, Joly C et al (2011) Composite films from spruce galactoglucomannans with microfibrillated spruce wood cellulose. Cellulose 18(3):713–726CrossRefGoogle Scholar
  132. 132.
    Peng XW, Ren JL, Zhong LX, Sun RC (2011) Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Biomacromol 12(9):3321–3329CrossRefGoogle Scholar
  133. 133.
    Shao D, Yotprayoonsak P, Saunajoki V et al (2018) Conduction properties of thin films from a water soluble carbon nanotube/hemicellulose complex. Nanotechnology 29(14):145203CrossRefGoogle Scholar
  134. 134.
    Bahcegul E, Toraman H E, Ozkan NBakir U (2012) Evaluation of alkaline pretreatment temperature on a multi-product basis for the co-production of glucose and hemicellulose based films from lignocellulosic biomass. Bioresour Technol, 103(1): 440–5CrossRefGoogle Scholar
  135. 135.
    Kayserilioğlu B Ş, Bakir U, Yilmaz LAkkaş N (2003) Use of xylan, an agricultural by-product, in wheat gluten based biodegradable films: mechanical, solubility and water vapor transfer rate properties. Bioresource Technology, 87(3): 239–246CrossRefGoogle Scholar
  136. 136.
    Ruiz HA, Cerqueira MA, Silva HD et al (2013) Biorefinery valorization of autohydrolysis wheat straw hemicellulose to be applied in a polymer-blend film. Carbohydrate Polymer 92(2):2154–2162CrossRefGoogle Scholar
  137. 137.
    Svard A, Brannvall EEdlund U (2015) Rapeseed straw as a renewable source of hemicelluloses: Extraction, characterization and film formation. Carbohydrate Polymer, 133: 179–86CrossRefGoogle Scholar
  138. 138.
    Oinonen P, Areskogh D, Henriksson G (2013) Enzyme catalyzed cross-linking of spruce galactoglucomannan improves its applicability in barrier films. Carbohydrate Polymer 95(2):690–696CrossRefGoogle Scholar
  139. 139.
    C. Péroval, F. Debeaufort, †, ‡, ‡ A-M S et al (2003) Modified Arabinoxylan-Based Films. Part B. Grafting of Omega-3 Fatty Acids by Oxygen Plasma and Electron Beam Irradiation. Journal of Agricultural & Food Chemistry, 51(10): 3120–6Google Scholar
  140. 140.
    Peroval C, Debeaufort F, Seuvre AM et al (2004) Modified arabinoxylan-based films grafting of functional acrylates by oxygen plasma and electron beam irradiation. J Membr Sci 233(1–2):129–139CrossRefGoogle Scholar
  141. 141.
    Lee S G, An E y, Lee J B et al (2007) Enhanced cell affinity of poly(D, L-lactic-co-glycolic acid) (50/50) by plasma treatment with β-(1 → 3) (1 → 6)-glucan. Surface and Coatings Technology, 201(9–11): 5128-5131CrossRefGoogle Scholar
  142. 142.
    Fredon E, Granet R, Zerrouki R et al (2002) Hydrophobic films from maize bran hemicelluloses. Carbohyd Polym 49(1):1–12CrossRefGoogle Scholar
  143. 143.
    Gröndahl M, Gustafsson Anna, Gatenholm P (2006) Gas-Phase Surface Fluorination of Arabinoxylan Films. Macromolecules 39(7):2718–2721CrossRefGoogle Scholar
  144. 144.
    Šimkovic I, Gedeon O, Uhliariková I, Mendichi RKirschnerová S (2011) Positively and negatively charged xylan films. Carbohydrate Polymers, 83(2): 769–775CrossRefGoogle Scholar
  145. 145.
    Hesse S, Liebert THeinze T (2005) Studies on the Film Formation of Polysaccharide Based Furan-2-Carboxylic Acid Esters. Macromolecular Symposia, 232(1): 57–67CrossRefGoogle Scholar
  146. 146.
    Kong W, Huang D, Xu G et al (2016) Graphene Oxide/Polyacrylamide/Aluminum Ion Cross-Linked Carboxymethyl Hemicellulose Nanocomposite Hydrogels with Very Tough and Elastic Properties. Chem Asian J 11(11):1697–1704CrossRefGoogle Scholar
  147. 147.
    Zhang W, Liang Z, Feng Q et al (2016) Reed hemicellulose-based hydrogel prepared by glow discharge eletrolysis plasma and its adsorption properties for heavy metal ions. Fresenius Environ Bull 25(6):1791–1798Google Scholar
  148. 148.
    Jing Z, Zhang G, Sun X-F, Shi XSun W (2014) Preparation and adsorption properties of a novel superabsorbent based on multiwalled carbon nanotubes-xylan composite and poly(methacrylic acid) for methylene blue from aqueous solution. Polymer Composites, 35(8): 1516–1528CrossRefGoogle Scholar
  149. 149.
    Sun XF, Ye Q, Jing Z, Li Y (2014) Preparation of hemicellulose-g-poly(methacrylic acid)/carbon nanotube composite hydrogel and adsorption properties. Polym Compos 35(1):45–52CrossRefGoogle Scholar
  150. 150.
    Voepel J, Sjöberg J, Reif M et al (2009) Drug diffusion in neutral and ionic hydrogels assembled from acetylated galactoglucomannan. J Appl Polym Sci 112(4):2401–2412CrossRefGoogle Scholar
  151. 151.
    Zhao W, Nugroho RW, Odelius K et al (2015) In situ cross-linking of stimuli-responsive hemicellulose microgels during spray drying. ACS Appl Mater Interfaces 7(7):4202–4215CrossRefGoogle Scholar
  152. 152.
    Alexandra AR, Ulrica E, John S, Ann-Christine A, Henrik S (2008) Protein Release from Galactoglucomannan Hydrogels: Influence of Substitutions and Enzymatic Hydrolysis by mannanase. Biomacromol 9(8):2104–2110CrossRefGoogle Scholar
  153. 153.
    Guo B, Glavas L, Albertsson A-C (2013) Biodegradable and electrically conducting polymers for biomedical applications. Prog Polym Sci 38(9):1263–1286CrossRefGoogle Scholar
  154. 154.
    Dai QQ, Ren JL, Peng F et al (2016) Synthesis of Acylated Xylan-Based Magnetic Fe3O4 Hydrogels and Their Application for H2O2 Detection. Materials (Basel) 9(8):3–16CrossRefGoogle Scholar
  155. 155.
    Du J, Li B, Li C et al (2016) Tough and multi-responsive hydrogel based on the hemicellulose from the spent liquor of viscose process. Int J Biol Macromol 88:451–456CrossRefGoogle Scholar
  156. 156.
    Liu S, Chen F, Song X, Wu H (2016) Preparation and characterization of temperature- and pH-sensitive hemicellulose-containing hydrogels. Int J Polym Anal Charact 22(3):187–201CrossRefGoogle Scholar
  157. 157.
    Pahimanolis N, Sorvari A, Luong N, DSeppala J (2014) Thermoresponsive xylan hydrogels via copper-catalyzed azide-alkyne cycloaddition. Carbohydrate Polymer, 102: 637–44CrossRefGoogle Scholar
  158. 158.
    Peng XW, Ren JL, Zhong LX, Peng F, Sun RC (2011) Xylan-rich hemicelluloses-graft-acrylic acid ionic hydrogels with rapid responses to pH, salt, and organic solvents. J Agric Food Chem 59(15):8208–8215CrossRefGoogle Scholar
  159. 159.
    Yang JY, Zhou XS, Fang J (2011) Synthesis and characterization of temperature sensitive hemicellulose-based hydrogels. Carbohyd Polym 86(3):1113–1117CrossRefGoogle Scholar
  160. 160.
    Zhang W, Zhu S, Bai Y et al (2015) Glow discharge electrolysis plasma initiated preparation of temperature/pH dual sensitivity reed hemicellulose-based hydrogels. Carbohydrate Polymer 122:11–17CrossRefGoogle Scholar
  161. 161.
    Zhao W, Glavas L, Odelius K, Edlund U, Albertsson A-C (2014) Facile and Green Approach towards Electrically Conductive Hemicellulose Hydrogels with Tunable Conductivity and Swelling Behavior. Chem Mater 26(14):4265–4273CrossRefGoogle Scholar
  162. 162.
    Zhao W, Glavas L, Odelius K, Edlund U, Albertsson A-C (2014) A robust pathway to electrically conductive hemicellulose hydrogels with high and controllable swelling behavior. Polymer 55(13):2967–2976CrossRefGoogle Scholar
  163. 163.
    Rezakazemi M, Shahidi K, Mohammadi T (2012) Sorption properties of hydrogen-selective PDMS/zeolite 4A mixed matrix membrane. Int J Hydrogen Energy 37(22):17275–17284CrossRefGoogle Scholar
  164. 164.
    Rezakazemi M, Shahidi K, Mohammadi T (2012) Hydrogen separation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matrix membranes. Int J Hydrogen Energy 37(19):14576–14589CrossRefGoogle Scholar
  165. 165.
    Qi XM, Chen GG, Gong XD et al (2016) Enhanced mechanical performance of biocompatible hemicelluloses-based hydrogel via chain extension. Scientific Reports 6:33603CrossRefGoogle Scholar
  166. 166.
    Gabrielii I, Gatenholm P (2015) Preparation and Properties of Hydrogels Based on Hemicellulose. J Appl Polym Sci 69(8):1661–1667CrossRefGoogle Scholar
  167. 167.
    Salam A, Venditti RA, Pawlak JJ, El-Tahlawy K (2011) Crosslinked hemicellulose citrate-chitosan aerogel foams. Carbohyd Polym 84(4):1221–1229CrossRefGoogle Scholar
  168. 168.
    Guan Y, Chen J, Qi X et al (2015) Fabrication of biopolymer hydrogel containing Ag nanoparticles for antibacterial property. Ind Eng Chem Res 54(30):7393–7400CrossRefGoogle Scholar
  169. 169.
    Guan Y, Bian J, Peng F, Zhang XM, Sun RC (2014) High strength of hemicelluloses based hydrogels by freeze/thaw technique. Carbohydrate Polymer 101:272–280CrossRefGoogle Scholar
  170. 170.
    Guan Y, Zhang B, Bian J, Peng F, Sun R-C (2014) Nanoreinforced hemicellulose-based hydrogels prepared by freeze-thaw treatment. Cellulose 21(3):1709–1721CrossRefGoogle Scholar
  171. 171.
    Karaaslan MA, Tshabalala MA, Yelle DJ, Buschle-Diller G (2011) Nanoreinforced biocompatible hydrogels from wood hemicelluloses and cellulose whiskers. Carbohyd Polym 86(1):192–201CrossRefGoogle Scholar
  172. 172.
    Alakalhunmaa S, Parikka K, Penttilä PA et al (2016) Softwood-based sponge gels. Cellulose 23(5):3221–3238CrossRefGoogle Scholar
  173. 173.
    Dax D, Bastidas M S C, Honorato C et al (2015) Tailor-made hemicellulose-based hydrogels reinforced with nanofibrillated cellulose. Nordic Pulp & Paper Research Journal, 30(3)CrossRefGoogle Scholar
  174. 174.
    Dragan ES (2014) Design and applications of interpenetrating polymer network hydrogels. A review. Chemical Engineering Journal 243:572–590CrossRefGoogle Scholar
  175. 175.
    Myung D, Waters D, Wiseman M et al (2008) Progress in the development of interpenetrating polymer network hydrogels. Polym Adv Technol 19(6):647–657CrossRefGoogle Scholar
  176. 176.
    Maleki L, Edlund UAlbertsson A-C (2016) Green semi-IPN hydrogels by direct utilization of crude wood hydrolysates. ACS Sustainable Chemistry & Engineering, 4(8): 4370–4377CrossRefGoogle Scholar
  177. 177.
    Maleki L, Edlund UAlbertsson A C (2017) Synthesis of full interpenetrating hemicellulose hydrogel networks. Carbohydrate Polymer, 170: 254–263CrossRefGoogle Scholar
  178. 178.
    Meena R, Lehnen R, Saake B (2013) Microwave-assisted synthesis of kC/Xylan/PVP-based blend hydrogel materials: physicochemical and rheological studies. Cellulose 21(1):553–568CrossRefGoogle Scholar
  179. 179.
    Rezakazemi M, Sadrzadeh M, Matsuura T (2018) Thermally stable polymers for advanced high-performance gas separation membranes. Prog Energy Combust Sci 66:1–41CrossRefGoogle Scholar
  180. 180.
    Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati MM, Ismail AF, Matsuura T (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Prog Polym Sci 39(5):817–861CrossRefGoogle Scholar
  181. 181.
    Fonseca Silva TC, Habibi Y, Colodette JL, Lucia LA (2011) The influence of the chemical and structural features of xylan on the physical properties of its derived hydrogels. Soft Matter 7(3):1090–1099CrossRefGoogle Scholar
  182. 182.
    M S L, Annchristine Albertsson, Elisabetta Ranucci, Michele Laus, Giani E (2005) Biodegradable Polymers from Renewable Sources: Rheological Characterization of Hemicellulose-Based Hydrogels. Biomacromolecules, 6(2): 684CrossRefGoogle Scholar
  183. 183.
    Lindblad MS, Ranucci E, Albertsson AC (2001) Biodegradable Polymers from Renewable Sources. New Hemicellulose-Based Hydrogels. Macromolecular Rapid Communications 22(12):962–967CrossRefGoogle Scholar
  184. 184.
    Tanodekaew S, Channasanon S, Uppanan P (2006) Xylan/polyvinyl alcohol blend and its performance as hydrogel. J Appl Polym Sci 100(3):1914–1918CrossRefGoogle Scholar
  185. 185.
    Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Reviews 4(1):37–59CrossRefGoogle Scholar
  186. 186.
    Rezakazemi M, Zhang Z (2018) 2.29 Desulfurization Materials A2-Dincer, Ibrahim. In: (ed) Comprehensive Energy Systems. Elsevier, Oxford, p 944–979CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations