Thermal Behaviour and Crystallization of Green Biocomposites

  • Vasile Cristian GrigorasEmail author


The thermal behaviour of the green composites (GCs) was an interesting issue discussed in many studies of recent years. In the foreground, unquestionable is the role played by the interface between natural fibers or cellulose nanoparticles and the polymer matrix, which also is most presented in this chapter. There were presented the effects at interfaces on thermal behaviour of the different polymer matrix, most of them biodegradable, that was reinforced using various methods with natural fillers (fibers or cellulose nanoparticles) isolated and extracted from different bioresources. Before starts to present literature results, the most common thermal analytical techniques were reviewed. Thermal behaviour of the most representative from the GCs class was presented in this chapter. Because interfaces of GCs show a greater impact on thermal transitions, firstly were presented results related to the stable temperature range when the important thermal transitions like glass transition, melting or/and (cold) crystallization occurs. The modifications occurred on glass transition, melting and crystallization temperatures or on the crystallinity index were discussed as a function of their content in the GCs or by chemical treatment applied (e.g. hydrolyzation, alkalinization, silanization) or surface treatments on fillers. The role of fillers reinforced in a polymer matrix, which affects morphology development at interface region was highlighted, too. Then, in the next chapter subsection were presented representative works for a discussed domain that emphasize once again the interface effects on the thermal degradation temperatures or on the mechanism of the thermal degradation as well. Also, fibers content or applied chemical treatment showed a major effect on thermal degradation as will be seen next. Like a general conclusion on thermal behavior of the GCs, three important key factors in the preparing of a GCs were highlighted: the natural filler dimensions (high aspect ratio), a good dispersion (to prevent heterogeneity), and the last, but maybe most important, is the chemical treatment applied on the surface. If these conditions were fulfilled, a biomaterial presenting good thermal properties automatically will show good mechanical performances, too.


Green composites Glass transition Melting Crystallization Thermal stability 

List of Abbreviations




Acetate cellulose nanocrystals


Acetylated cellulose nanocrystals


Acetyltributyl citrate ATBC


Alkali treated sisal fibers


Bacterial cellulose


Bacterial nanocellulose


Bamboo fibers


Biobased polyurethane


Citric acid CA




Cellulose fibers


Chitin nanocrystals




Cellulose nanocrystals


Conventional spray dried cellulose nanocrystals


Freeze dried cellulose nanocrystals


Cellulose nanocrystals grafted with long alkyl chain (C18)


Cellulose nanofibers


Poly(l-lactide)-grafted-cellulose nanocrystals


Cellulose nanowhiskers


Heat capacity


Heat capacity step (at glass transition)


Activation energy




Dynamic mechanical analysis


Differential scanning calorimetry


Derivative thermogravimetry


Differential thermal analysis


Epoxidized natural rubber


Ethylene vinyl alcohol


Green composite






Glycerol triacetate


Glycidyl methacrylate


3-glycidoxypropyltrimethoxy silane


Enthalpy variation in time


Alkalinized hemp fibers


Hydrolysed cellulose


Hemp fibers


Hard wood




Melting enthalpy


Crystallization enthalpy


Kenaf fibers


Bleached kraft softwood


Lactate cellulose nanocrystals


Lysine-based diisocyanate


Low density polyethylene


Maleic anhidride


Modified bamboo cellulose


Microcrystalline cellulose


Microfibrilated cellulose


Modified rice straw fibers


Black spruce and northern bleached softwood kraft


Octadecyl isocyanate


Poly(butyl acrylate)


Poly(butylene adipate-co-terephthalate)


4-phenylbutyl isocyanate)


Poly(butylene succinate)




Polyfurfuril alchohol


Poly(hydroxy butyrate)


Poly(hydroxy butyrate-co-valerate)


Plastified lignin


Poly(lactic acid)


Poly(lactic acid)-grafted-cellulose nanocrystals


Poly(lactic acid-grafted-maleic anhydride)




Polarizing light microscopy


Poly(propylene carbonate)




Poly(propylene-grafted-maleic anhydride)




Poly(vinyl chloride)


Poly(vinyl alchohol)


Poly(vinyl acetate)


Ramie fibers


Rice husk


Rice straw




Maleic anhydride-grafted-styrene-ethylene-butadiene-styrene


Standard size cellulose fibers


Anhydride plasticized soy protein


Sylane treated sisal fibers




Triacetate citrate TAC


Toluene isocyanate TDI


Thermogravimetric analysis


Crystallization temperature


Crystallization onset temperature


Cold crystallization temperature


Glass transition


Melting temperature


Equilibrium melting point


Temperature of maximum decomposition rate


Thermoplastic starch




Untreated sisal fibers


Crystallinity index


Fold surface free energy


  1. 1.
    Das O, Bhattacharyya D, Sarmah AK (2016) Sustainable ecocomposites obtained from waste derived biochar: a consideration in performance properties, production costs, and environmental impact. J Clean Prod 129:159–168CrossRefGoogle Scholar
  2. 2.
    Mathot VBF (ed) (1994) Calorimetry and thermal analysis of polymers. Carl Hanser Verlag, MünchenGoogle Scholar
  3. 3.
    Turi EA (ed) (1997) Thermal characterization of polymeric materials. Academic Press, New YorkGoogle Scholar
  4. 4.
    Väisänen T, Das O, Tomppo L (2017) A review on new bio-based constituents for natural fiber-polymer composites. J Cleaner Prod 149:582–596CrossRefGoogle Scholar
  5. 5.
    Monteiro SN, Calado V, Rodriguez RJS et al (2012) Thermogravimetric behavior of natural fibers reinforced polymer composites—an overview. Mat Sci Eng A 557:17–28CrossRefGoogle Scholar
  6. 6.
    Signori F, Pelagaggi M, Bronco S et al (2012) Amorphous/crystal and polymer/filler interphases in biocomposites from poly(butylene succinate). Thermochim Acta 543:74–81CrossRefGoogle Scholar
  7. 7.
    Shinoj S, Visvanathan R, Panigrahi S et al (2011) Oil palm fiber (OPF) and its composites: a review. Ind Crops Prod 33:7–22CrossRefGoogle Scholar
  8. 8.
    Cuinat-Guerraz N, Dumont M-J, Hubert P, (2016) Environmental resistance of flax/bio-based epoxy and flax/polyurethane composites manufactured by resin transfer moulding. Compos Part A 88:140–147CrossRefGoogle Scholar
  9. 9.
    Yu T, Ren J, Li S et al (2010) Effect of fiber surface treatments on the properties of poly(lactic acid)/ramie composites. Compos Part A 41:499–505CrossRefGoogle Scholar
  10. 10.
    Yu T, Jiang N et al (2014) Study on short ramie fiber/poly(lactic acid) composites compatibilized by maleic anhydride. Compos Part A 64:139–146CrossRefGoogle Scholar
  11. 11.
    Shih YF, Huang CC (2011) Polylactic acid (PLA)/banana fiber (BF) biodegradable green composites. J Polym Res 18:2335–2340CrossRefGoogle Scholar
  12. 12.
    Haafiz M, Hassan A, Khalil A et al (2016) Exploring the effect of cellulose nanowhiskers isolated from oil palm biomass on polylactic acid properties. Int J Biol Macromol 85:370–378CrossRefGoogle Scholar
  13. 13.
    Mandal A, Chakrabarty D (2014) Studies on the mechanical, thermal, morphological and barrier properties of nanocomposites based on poly(vinyl alcohol) and nanocellulose from sugarcane bagasse. J Ind Eng Chem 20:462–473CrossRefGoogle Scholar
  14. 14.
    Lin N, Huang J, Chang PR et al (2011) Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid). Carbohydr Polym 83:1834–1842CrossRefGoogle Scholar
  15. 15.
    Lizundia E, Vilas JL, León LM (2015) Crystallization, structural relaxation and thermal degradation in poly(l-lactide)/cellulose nanocrystal renewable nanocomposites. Carbohydr Polym 123:256–265CrossRefGoogle Scholar
  16. 16.
    Hu X, Xu C, Gao J et al (2013) Toward environment-friendly composites of poly(propylene carbonate) reinforced with cellulose nanocrystals. Compos Sci Technol 78:63–68CrossRefGoogle Scholar
  17. 17.
    Cao X, Chen Y, Chang PR et al (2008) Green composites reinforced with hemp nanocrystals in plasticized starch. J Appl Polym Sci 109:3804–3810CrossRefGoogle Scholar
  18. 18.
    Lu Y, Weng L, Cao X (2006) Morphological, thermal and mechanical properties of ramie crystallites-reinforced plasticized starch biocomposites. Carbohydr Polym 63:198–204CrossRefGoogle Scholar
  19. 19.
    Chaichi M, Hashemi M, Badii F et al (2017) Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose. Carbohydr Polym 157:167–175CrossRefGoogle Scholar
  20. 20.
    Abdul Khalil HPS, Bhat IUH, Jawaid M et al (2012) Bamboo fibre reinforced biocomposites: a review. Mater Des 42:353–368CrossRefGoogle Scholar
  21. 21.
    Lee SH, Wang S (2006) Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Compos Part A 37:80–91CrossRefGoogle Scholar
  22. 22.
    Liu H, Huang Y et al (2010) Isothermal crystallization kinetics of modified bamboo cellulose/PCL composites. Carbohydr Polym 79:513–519CrossRefGoogle Scholar
  23. 23.
    Ramesh M (2016) Kenaf (Hibiscus cannabinus L.) fibre based bio-materials: a review on processing and properties. Prog Mat Sci 78–79:1–92CrossRefGoogle Scholar
  24. 24.
    Buzarovska A, Bogoeva-Gaceva G, Grozdanov A et al (2007) Crystallization behavior of poly(hydroxybutyrate-co-valerate) in model and bulk PHBV/kenaf fiber composites. J Mater Sci 42:6501–6509CrossRefGoogle Scholar
  25. 25.
    Dobreva T, Perena JM, Perez E et al (2010) Crystallization behavior of poly(l-lactic acid)-based ecocomposites prepared with Kenaf fiber and rice straw. Polym Compos 31(6):974–984CrossRefGoogle Scholar
  26. 26.
    Qin L, Qiu J, Liu M et al (2011) Mechanical and thermal properties of poly(lactic acid) composites with rice straw fiber modified by poly(butyl acrylate). Chem Eng J 166:772–778CrossRefGoogle Scholar
  27. 27.
    Zhao Q, Tao J, Yam RCM et al (2008) Biodegradation behavior of polycaprolactone/rice husk ecocomposites in simulated soil medium. Polym Degrad Stab 93:1571–1576CrossRefGoogle Scholar
  28. 28.
    Yu T, Li Y (2014) Influence of poly(butylenes adipate-co-terephthalate) on the properties of the biodegradable composites based on ramie/poly(lactic acid). Compos Part A 58:24–29CrossRefGoogle Scholar
  29. 29.
    Yu T, Jiang N, Li Y (2014) Study on short ramie fiber/poly(lactic acid) composites compatibilized by maleic anhydride. Compos Part A 64:139–146CrossRefGoogle Scholar
  30. 30.
    Dong Y, Ghataura A, Takagi H et al (2014) Polylactic acid (PLA) biocomposites reinforced with coir fibres: evaluation of mechanical performance and multifunctional properties. Compos Part A 63:76–84CrossRefGoogle Scholar
  31. 31.
    Wang Y, Tong B, Hou S et al (2011) Transcrystallization behavior at the poly(lactic acid)/sisal fibre biocomposite interface. Compos Part A 42:66–74CrossRefGoogle Scholar
  32. 32.
    Biswal M, Mohanty S, Nayak SK (2009) Influence of organically modified nanoclay on the performance of pineapple leaf fiber-reinforced polypropylene nanocomposites. J Appl Polym Sci 114:4091–4103CrossRefGoogle Scholar
  33. 33.
    Chollakup R, Tantatherdtam R, Ujjin S et al (2011) Pineapple leaf fiber reinforced thermoplastic composites: effects of fiber length and fiber content on their characteristics. J Appl Polym Sci 119:1952–1960CrossRefGoogle Scholar
  34. 34.
    Torres-Tello EV, Robledo-Ortíz JR, González-García Y et al (2017) Effect of agave fiber content in the thermal and mechanical properties of green composites based on polyhydroxybutyrate or poly(hydroxybutyrate-co-hydroxyvalerate). Ind Crops Prod 99:117–125CrossRefGoogle Scholar
  35. 35.
    Ding WD, Jahani D, Chang E et al (2016) Development of PLA/cellulosic fiber composite foams using injection molding: crystallization and foaming behaviors. Compos Part A 83:130–139CrossRefGoogle Scholar
  36. 36.
    Le Moigne N, Longerey M, Taulemesse J-M et al (2014) Study of the interface in natural fibres reinforced poly(lactic acid) biocomposites modified by optimized organosilane treatments. Ind Crops Prod 52:481–494CrossRefGoogle Scholar
  37. 37.
    Pracella M, Chionna D, Anguillesi I et al (2006) Functionalization, compatibilization and properties of polypropylene composites with Hemp fibres. Compos Sci Technol 66:2218–2230CrossRefGoogle Scholar
  38. 38.
    Yang S, Madbouly SA, Schrader JA et al (2015) Characterization and biodegradation behavior of bio-based poly(lactic acid) and soy protein blends for sustainable horticultural applications. Green Chem 17:380–393CrossRefGoogle Scholar
  39. 39.
    Cai J, Liu M, Wang L et al (2011) Isothermal crystallization kinetics of thermoplastic starch/poly(lactic acid) composites. Carbohydr Polym 86:941–947CrossRefGoogle Scholar
  40. 40.
    Cai J, Xiong Z, Zhou M et al (2014) Thermal properties and crystallization behavior of thermoplastic starch/poly(ε-caprolactone) composites. Carbohydr Polym 102:746–754CrossRefGoogle Scholar
  41. 41.
    Luduena L, Vázquez A, Alvarez V (2012) Effect of lignocellulosic filler type and content on the behavior of polycaprolactone based eco-composites for packaging applications. Carbohydr Polym 87:411–421CrossRefGoogle Scholar
  42. 42.
    Du Y, Wu T, Yan N et al (2014) Fabrication and characterization of fully biodegradable natural fiber-reinforced poly(lactic acid) composites. Compos Part B 56:717–723CrossRefGoogle Scholar
  43. 43.
    Suryanegara L, Nakagaito AN, Yano H (2009) The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos Sci Technol 69:1187–1192CrossRefGoogle Scholar
  44. 44.
    Suryanegara L, Nakagaito AN, Yano H (2010) Thermo-mechanical properties of microfibrillated cellulose-reinforced partially crystallized PLA composites. Cellulose 17:771–778CrossRefGoogle Scholar
  45. 45.
    Qiu K, Netravali AN (2012) Fabrication and characterization of biodegradable composites based on microfibrillated cellulose and polyvinyl alcohol. Compos Sci Technol 72:1588–1594CrossRefGoogle Scholar
  46. 46.
    Haafiz MKM, Hassan A, Zakaria Z et al (2013) Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose. Carbohydr Polym 98:139–145CrossRefGoogle Scholar
  47. 47.
    Kowalczyk M, Piorkowska E, Kulpinski P et al (2011) Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers. Compos Part A 42:1509–1514CrossRefGoogle Scholar
  48. 48.
    Benhamou K, Kaddami H, Magnin A et al (2015) Bio-based polyurethane reinforced with cellulose nanofibers: a comprehensive investigation on the effect of interface. Carbohydr Polym 122:202–211CrossRefGoogle Scholar
  49. 49.
    Frone AN, Berlioz S, Chailan JF et al (2013) Morphology and thermal properties of PLA—cellulose nanofibers composites. Carbohydr Polym 91:377–382CrossRefGoogle Scholar
  50. 50.
    Abdulkhani A, Hosseinzadeh J, Ashori A et al (2014) Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polym Test 35:73–79CrossRefGoogle Scholar
  51. 51.
    Herrera N, Mathew AP, Oksman K (2015) Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: mechanical, thermal and optical properties. Compos Sci Technol 106:149–155CrossRefGoogle Scholar
  52. 52.
    Herrera N, Salaberria AM, Mathew AP et al (2016) Plasticized polylactic acid nanocomposite films with cellulose and chitin nanocrystals prepared using extrusion and compression molding with two cooling rates: effects on mechanical, thermal and optical properties. Compos Part A 83:89–97CrossRefGoogle Scholar
  53. 53.
    Almasi H, Ghanbarzadeh B, Dehghannya J (2015) Novel nanocomposites based on fatty acid modified cellulose nanofibers/poly(lactic acid): morphological and physical properties. Food Pack Shelf Life 5:21–31CrossRefGoogle Scholar
  54. 54.
    Mariano P, Minhaz-Ul H, Debora P (2014) Morphology and properties tuning of PLA/cellulose nanocrystals bionanocomposites by means of reactive functionalization and blending with PVAc. Polymer 55:3720–3728CrossRefGoogle Scholar
  55. 55.
    Pei A, Zhou Q, Berglund LA (2010) Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA)—crystallization and mechanical property effects. Compos Sci Technol 70:815–821CrossRefGoogle Scholar
  56. 56.
    Bitinis N, Fortunati E, Verdejo R et al (2013) Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. Part II: properties evaluation. Carbohydr Polym 96:621–627CrossRefGoogle Scholar
  57. 57.
    Yu HY, Qin ZY, Liu L et al (2013) Comparison of the reinforcing effects for cellulose nanocrystals obtained by sulfuric and hydrochloric acid hydrolysis on the mechanical and thermal properties of bacterial polyester. Compos Sci Technol 87:22–28CrossRefGoogle Scholar
  58. 58.
    Kamal MR, Khoshkava V (2015) Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites. Carbohydr Polym 123:105–114CrossRefGoogle Scholar
  59. 59.
    Miao C, Hamad WY (2016) In-situ polymerized cellulose nanocrystals (CNC)-poly(l-lactide)(PLLA) nanomaterials and applications in nanocomposite processing. Carbohydr Polym 153:549–558CrossRefGoogle Scholar
  60. 60.
    Fortunati E, Armentano I, Zhou Q et al (2012) Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 87:1596–1605CrossRefGoogle Scholar
  61. 61.
    Morelli CL, Belgacem MN, Branciforti MC et al (2016) Supramolecular aromatic interactions to enhance biodegradable film properties through incorporation of functionalized cellulose nanocrystals. Compos Part A 83:80–88CrossRefGoogle Scholar
  62. 62.
    Yu HY, Qin ZY (2014) Surface grafting of cellulose nanocrystals with poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Carbohydr Polym 101:471–478CrossRefGoogle Scholar
  63. 63.
    Arrieta MP, López J, López D et al (2016) Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals. Ind Crops Prod 93:290–301CrossRefGoogle Scholar
  64. 64.
    Malmir S, Montero B, Rico M et al (2017) Morphology, thermal and barrier properties of biodegradable films of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) containing cellulose nanocrystals. Compos Part A 93:41–48CrossRefGoogle Scholar
  65. 65.
    Yu HY, Yao JM (2016) Reinforcing properties of bacterial polyester with different cellulose nanocrystals via modulating hydrogen bonds. Compos Sci Technol 136:53–60CrossRefGoogle Scholar
  66. 66.
    Monteiro SN, Calado V, Rodriguez RJS et al (2012) Thermogravimetric stability of polymer composites reinforced with less common lignocellulosic fibers—an overview. J Mater Res Technol 1(2):117–126CrossRefGoogle Scholar
  67. 67.
    Rosa MF, Chiou BS, Medeiros ES et al (2009) Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites. Bioresour Technol 100:5196–5202CrossRefGoogle Scholar
  68. 68.
    Morandim-Giannetti AA, Agnelli JAM, Lanças BZ et al (2012) Lignin as additive in polypropylene/coir composites: thermal, mechanical and morphological properties. Carbohydr Polym 87:2563–2568CrossRefGoogle Scholar
  69. 69.
    Guigo N, Mija A, Vincent L et al (2010) Eco-friendly composite resins based on renewable biomass resources: polyfurfuryl alcohol/lignin thermosets. Eur Polym J 46:1016–1023CrossRefGoogle Scholar
  70. 70.
    Deka H, Misra M, Mohanty A (2013) Renewable resource based “all green composites” from kenaf biofiber and poly(furfuryl alcohol) bioresin. Ind Crops Prod 41:94–101CrossRefGoogle Scholar
  71. 71.
    Azwa ZN, Yousif BF (2013) Characteristics of kenaf fibre/epoxy composites subjected to thermal degradation. Polym Degrad Stab 98:2752–2759CrossRefGoogle Scholar
  72. 72.
    Elkhaoulani A, Arrakhiz FZ, Benmoussa K et al (2013) Mechanical and thermal properties of polymer composite based on natural fibers: moroccan hemp fibers/polypropylene. Mater Des 49:203–208CrossRefGoogle Scholar
  73. 73.
    Panaitescu DM, Vuluga Z, Ghiurea M et al (2015) Influence of compatibilizing system on morphology, thermal and mechanical properties of high flow polypropylene reinforced with short hemp fibers. Compos Part B 69:286–295CrossRefGoogle Scholar
  74. 74.
    Bakare FO, Ramamoorthy SK, Åkesson D et al (2016) Thermomechanical properties of bio-based composites made from a lactic acid thermoset resin and flax and flax/basalt fibre reinforcements. Compos Part A 83:176–184CrossRefGoogle Scholar
  75. 75.
    Kim KW, Lee BH, Kim HJ et al (2012) Thermal and mechanical properties of cassava and pineapple flours-filled PLA bio-composites. J Therm Anal Calorim 108:1131–1139CrossRefGoogle Scholar
  76. 76.
    Thao Tran TP, Bénézet JC, Bergeret A (2014) Rice and Einkorn wheat husks reinforced poly(lactic acid) (PLA)biocomposites: effects of alkaline and silane surface treatments of husks. Ind Crops Prod 58:111–124CrossRefGoogle Scholar
  77. 77.
    Thakur VJ, Thakur MT, Gupta RK (2013) Development of functionalized cellulosic biopolymers by graft copolymerization. Int J Biol Macromol 62:44–51CrossRefGoogle Scholar
  78. 78.
    Priya B, Gupta VK, Pathania D (2014) Synthesis, characterization and antibacterial activity of biodegradablestarch/PVA composite films reinforced with cellulosic fiber. Carbohydr Polym 109:171–179CrossRefGoogle Scholar
  79. 79.
    Peresin MS, Habibi Y, Zoppe JO et al (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11:674–681CrossRefGoogle Scholar
  80. 80.
    Park SH, Oh KW, Kim SH (2013) Reinforcement effect of cellulose nanowhisker on bio-based polyurethane. Compos Sci Technol 86:82–88CrossRefGoogle Scholar
  81. 81.
    Spinella S, Lo Re G, Liu B et al (2015) Polylactide/cellulose nanocrystal nanocomposites: efficient routes for nanofiber modification and effects of nanofiber chemistry on PLA reinforcement. Polymer 65:9–17CrossRefGoogle Scholar
  82. 82.
    Garcia NL, Ribba L, Dufresne A et al (2011) Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals. Carbohydr Polym 84:203–210CrossRefGoogle Scholar
  83. 83.
    Montero B, Rico M, Rodríguez-Llamazares S et al (2017) Effect of nanocellulose as a filler on biodegradable thermoplastic starch films from tuber, cereal and legume. Carbohydr Polym 157:1094–1104CrossRefGoogle Scholar
  84. 84.
    Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82:337–345CrossRefGoogle Scholar
  85. 85.
    Martins IMG, Magina SP, Oliveira L et al (2009) New biocomposites based on thermoplastic starch and bacterial cellulose. Compos Sci Technol 69:2163–2168CrossRefGoogle Scholar
  86. 86.
    Meneguin AB, Cury BSF, Dos Santos AM (2017) Resistant starch/pectin free-standing films reinforced with nanocellulose intended for colonic methotrexate release. Carbohydr Polym 157:1013–1023CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.“Petru Poni” Institute of Macromolecular ChemistryIassyRomania

Personalised recommendations