Clay Based Biopolymer Nanocomposites and Their Applications in Environmental and Biomedical Fields

  • K. Sangeetha
  • P. Angelin Vinodhini
  • P. N. SudhaEmail author


In recent decade the new discoveries in polymer-clay nanocomposites have attracted the attention of research community as it was of low cost, easily available in nature and has been expanded to a wide range of applications in various industries, in particular, their potential current status and continuous development in the field of polymer science and nanotechnology. In this chapter, we discuss in detail the most significant findings of recent literature describing a cluster of studies on clay in combination with polymeric matrixes and their fascinating applications on bone tissue regeneration, drug delivery, regenerative medicine, biosensors etc. We also discussed the environmental application of hybrid clay polymeric matrixes to remove pollutants from industrial effluent, heavy metal removal and so on. Thus we hope this chapter grasps the attention of clay scientists in terms of academic, industries as well as politics (by funding projects) to focus on this area to explore more novel materials in future to improve the quality of mankind.


Nanocomposite Drug delivery Biosensor Batch study Heavy metal Dye removal 


  1. 1.
    Abdeen R, Salahuddin N (2013) Modified chitosan-clay nanocomposite as a drug delivery system intercalation and in vitro release of ibuprofen. J Chem 2013:1–9CrossRefGoogle Scholar
  2. 2.
    Afsar HA, Ghaee A (2016) Preparation of aminated chitosan/alginate scaffold containing halloysite nanotubes with improved cell attachment. Carbohyd Polym 151:1120–1131CrossRefGoogle Scholar
  3. 3.
    Aguzzi C, Cerezo P, Viseras C, Caramella C (2007) Use of clays as drug delivery systems: possibilities and limitations. Appl Clay Sci 36(1–3):22–36CrossRefGoogle Scholar
  4. 4.
    Ahmad R, Hasan I (2017) L-methionine montmorillonite encapsulated guar gum-g-polyacrylonitrile copolymer hybrid nanocomposite for removal of heavy metals. Groundwater Sustain Develop 5:75–84CrossRefGoogle Scholar
  5. 5.
    Ahsan SM, Thomas M, Reddy KK, Sooraparaju SG, Asthana A, Bhatnagar I (2018) Chitosan as biomaterial in drug delivery and tissue engineering. Int J Biol Macromol 110:97–109CrossRefGoogle Scholar
  6. 6.
    Ambrogi V, Pietrella D, Nocchetti M, Casagrande S, Moretti V, De Marco S, Ricci M (2017) Montmorillonite-chitosan-chlorhexidine composite films with antibiofilm activity and improved cytotoxicity for wound dressing. J Colloid Interface Sci 491:265–272CrossRefGoogle Scholar
  7. 7.
    Anirudhan TS, Suchithra PS, Radhakrishnan PG (2009) Synthesis and characterization of humic acid immobilized-polymer/bentonite composite and their ability to adsorb basic dyes from aqueous solutions. Appl Clay Sci 43:336–342CrossRefGoogle Scholar
  8. 8.
    Azha SF, Shahadat M, Ismail S (2017) Acrylic polymer emulsion supported bentonite clay coating for the analysis of industrial dye. Dyes Pigm 145:550–560CrossRefGoogle Scholar
  9. 9.
    Barlas FB, AgSeleci D, Ozkan M, Demir B, Seleci M, Aydin M, Tasdelen MA, Zareie HM, Timur S, Ozcelik S, Yagci Y (2014) Folic acid modified clay/polymer nanocomposites for selective cell adhesion. J Mater Chem B 2:6412–6421CrossRefGoogle Scholar
  10. 10.
    Bera H, Reddylppaguntu S, Kumar S, Vangala P (2017) Core-shell alginate-ghatti gum modified montmorillonite composite matrices for stomach-specific flurbiprofen delivery. Mater Sci Eng, C 76:715–726CrossRefGoogle Scholar
  11. 11.
    Besombes J-L, Cosnier S, Labbe P, Reverdy G (1995) Improvement of the analytical characteristics of an enzyme electrode for free and total cholesterol via laponite clay additives. Anal Chim Acta 317(1–3):275–280CrossRefGoogle Scholar
  12. 12.
    Bhattacharyya R, Ray SK (2014) Micro- and nano-sized bentonite filled composite superabsorbents of chitosan and acrylic copolymer for removal of synthetic dyes from water. Appl Clay Sci 101:510–520CrossRefGoogle Scholar
  13. 13.
    Bhowmick A, Banerjee SL, Pramanik N, Jana P, Gnanamani A, Das M, Paban Kundu P (2018) Organically modified clay supported chitosan/hydroxyapatite—zinc oxide nanocomposites with enhanced mechanical and biological properties for the application in bone tissue engineering. Int J Biol Macromol 106:11–19CrossRefGoogle Scholar
  14. 14.
    Bolisetty S, Mezzenga R (2016) Amyloid-carbon hybrid membranes for universal water purification. Nat Nanotechnol 11(4):365–371CrossRefGoogle Scholar
  15. 15.
    Bonifacio MA, Gentile P, Ferreira AM, Cometa S, De Giglio E (2017) Insight into halloysite nanotubes-loaded gellan gum hydrogels for soft tissue engineering applications. Carbohyd Polym 63:280–291CrossRefGoogle Scholar
  16. 16.
    Bounabi L, Mokhnachi NB, Haddadine N, Ouazi F, Barille R (2016) Development of poly(2-hydroxyethyl methacrylate)/clay composites as drug delivery systems of paracetamol. J Drug Deliv Sci Technol 33:58–65CrossRefGoogle Scholar
  17. 17.
    Boyer C, Figureiredo L, Pace R, Lesoeur J, Rouillon T, Visage CL, Tassin JF, Weiss P, Guicheux J, Rethore G (2018) Laponite nanoparticle-associated cellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering. Acta Biomater 65:112–122CrossRefGoogle Scholar
  18. 18.
    Bremere I, Kennedy M, Stikker A, Schippers J (2001) Growth of 200% predicted for desalination in waterscarce countries by 2025. Int Desalination Water Reuse Q 11(2):7–12Google Scholar
  19. 19.
    Buffa SD, Bonini M, Ridi F, Severi M, Losi P, Volp S, Al Kayal T, Soldani G, Baglioni P (2015) Design and characterization of a composite material based on Sr (II)-loaded clay nanotubes included within a biopolymer matrix. J Colloid Interface Sci 448:501–507CrossRefGoogle Scholar
  20. 20.
    Bunhu T, Chaukura N, Tichagwa L (2016) Preparation and characterization of polymer-grafted montmorillonite-lignocellulose nanocomposites by in situ intercalative polymerization. J Appl Chem 2016:1–8CrossRefGoogle Scholar
  21. 21.
    Chang CW, Van Spreeuwel A, Zhang C, Varghese S (2010) PEG/clay nanocomposite hydrogel: a mechanically robust tissue engineering scaffold. Soft Matter 6(20):5157–5164CrossRefGoogle Scholar
  22. 22.
    Chappidi DY, Mills DK (2016) Tissue engineering nanoclay composite scaffolds composed of poly-glycerol sebacate and poly-caprolactone. In: 32nd southern biomedical engineering conferenceGoogle Scholar
  23. 23.
    Chiu C-W, Huang T-K, Wang Y-C, Alamani BG, Lin J-J (2014) Intercalation strategies in clay/polymer hybrids. Prog Polym Sci 39:443–485CrossRefGoogle Scholar
  24. 24.
    Choudhury PR, Mondal P, Majumdar S (2015) Synthesis of bentonite clay based hydroxyapatite nanocomposites cross-linked by glutaraldehyde and optimization by response surface methodology for lead removal from aqueous solution. RSC Adv 5:100838–100848CrossRefGoogle Scholar
  25. 25.
    Chrzanowski W, Yunsun Kim S, Abou Neel EA (2013) Biomedical applications of clay. Aust J Chem 66:1315–1322CrossRefGoogle Scholar
  26. 26.
    Darei P, Siavash Madeeni S, Salehi E, Ghaemi N, Ghari HS, Khadivi MA, Rostami E (2013) Novel thin film composite membrane fabricated by mixed matrix nanoclay/chitosan on PVDF microfiltration support: preparation, characterization and performance in dye removal. J Membr Sci 436:97–108Google Scholar
  27. 27.
    Dawson JI, Kanczler JM, Yang XBB, Attard GS, Oreffo ROC (2011) Skeletal regeneration: application of nanotopography and biomaterials for skeletal stem cell based bone repair. Adv Mater 23:3304–3308Google Scholar
  28. 28.
    Demir AK, Elcin AE, Elcin YM (2018) Strontium-modified chitosan/montmorillonite composites as bone tissue engineering scaffold. Mater Sci Eng, C 89:8–14CrossRefGoogle Scholar
  29. 29.
    Devi Nirmla, Dutta Joydeep (2017) Preparation and characterization of chitosan-bentonite nanocomposite films for wound healing application. Int J Biol Macromol 104:1897–1904CrossRefGoogle Scholar
  30. 30.
    Edathil AA, Pal P, Banat F (2018) Alginate clay hybrid composite adsorbents for the reclamation of industrial lean methyldiethanolamine solutions. Appl Clay Sci 156:213–223CrossRefGoogle Scholar
  31. 31.
    El-Zahhar AA (2015) A polymer-organoclay nanocomposite for simultaneous removal of Chromium(vi) and organic dyes. Eur Chem Bull 4:10–12Google Scholar
  32. 32.
    El-Zahhar AA, Awaad NS, El-Katori E (2014) Removal of bromophenol blue dye from industrial waste water by synthesizing polymer-clay composite. J Mol Liq 199:454–461CrossRefGoogle Scholar
  33. 33.
    Emre FB, Kesik M, Kanik FE, Akpinar HZ, Alsan-Gurel E, Rossi RM, Toppare L (2015) A benzimidazole-based conducting polymer and a PMMA–clay nanocomposite containing biosensor platform for glucose sensing. Synth Met 207:102–109CrossRefGoogle Scholar
  34. 34.
    Fabryanty R, Valencia C, Soetaredjo FE, Nyooputro J, Santoso SP, Kumiawan A, Ju Y-H, Ismadji S (2017) Removal of crystal violet dye by adsorption using bentonite—alginate composite. J Environ Chem Eng 5(6):5677–5687CrossRefGoogle Scholar
  35. 35.
    Fan L, Zhang J, Wang A (2013) In situ generation of sodium alginate/hydroxyapatite/halloysite nanotubes nanocomposite hydrogel beads as drug-controlled release matrices. J Mater Chem B 45:6261–6270CrossRefGoogle Scholar
  36. 36.
    Gaharwar AK, Mihaila SM, Swami A, Patel A, Sant S, Reis RL, Marques AP, Gomes ME, Khademhosseini A (2013) Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv Mater 25(24):3329–3336CrossRefGoogle Scholar
  37. 37.
    Gaharwar AK, Kishore V, Rivera C, Bullock W, Wu CJ, Akkus O, Schmidt G (2012) Physically crosslinked nanocomposites from silicate-crosslinked PEO: mechanical properties and osteogenic differentiation of human mesenchymal stem cells. Macromol Biosci 12(6):779–793CrossRefGoogle Scholar
  38. 38.
    Ghadiri M, Chrzanowski W, Rohanizadeh R (2015) Biomedical applications of cationic clay minerals. RSC Adv 5:29467CrossRefGoogle Scholar
  39. 39.
    Gunister E, Pestreli D, Unlu CH, Atici O, Gungor N (2007) Synthesis and characterization of chitosan–MMT biocomposite systems. Carbohydr Polym 67:358–365CrossRefGoogle Scholar
  40. 40.
    Han C, Zhao A, Varughese E, Sahle-Demessie E (2018) Evaluating weathering of food packaging polyethylene-nano-clay composites: release of nanoparticles and their impacts. NanoImpact 9:61–71CrossRefGoogle Scholar
  41. 41.
    Heydari A, Khoshnood H, Sheibani H, Doostan F (2017) Polymerization of β-cyclodextrin in the presence of bentonite clay to produce polymer nanocomposites for removal of heavy metals from drinking water. Polym Adv Technol 28(4):524–532CrossRefGoogle Scholar
  42. 42.
    Hossein H, Neda K (2015) Removal of cationic dyes by poly(AA-co-AMPS)/montmorillonite nanocomposite hydrogel. Desalination Water Treat 1–12Google Scholar
  43. 43.
    Huang B, Liu M, Zhou C (2017) Chitosan composite hydrogels reinforced with natural clay nanotubes. Carbohyd Polym 175:689–698CrossRefGoogle Scholar
  44. 44.
    Huang B, Liu M, Long Z, Shen Y, Zhou C (2017) Effects of halloysite nanotubes on physical properties and cytocompatibility of alginate composite hydrogels. Mater Sci Eng C 70(1):303–310CrossRefGoogle Scholar
  45. 45.
    Jafarbeglou M, Abdouss M, Shoushtari AM, Jafarbeglou M (2016) Clay nanocomposites as engineered drug delivery systems. RSC Adv 6:50002–50016CrossRefGoogle Scholar
  46. 46.
    Ji L, Qiao W, Zhang Y, Wu H, Miao S, Cheng Z, Gong Q, Liang J, Zhu A (2017) A gelatin composite scaffold strengthened by drug-loaded halloysite nanotubes. Mater Sci Eng C 78:362–369CrossRefGoogle Scholar
  47. 47.
    Kevadiya BD, Rajkumar S, Bajaj H (2015) Application and evaluation of layered silicate–chitosan composites for site specific delivery of diclofenac. Biocybernetics Biomed Eng 35(2):120–127CrossRefGoogle Scholar
  48. 48.
    Khilbsuwan R, Siepmann F, Siepmann J, Pongjanyakul T (2017) Chitosan-clay nanocomposite microparticles for controlled drug delivery: effects of the MAS content and TPP crosslinking. J Drug Deliv Sci Technol 40:1–10CrossRefGoogle Scholar
  49. 49.
    Kohay H, Izbitski A, Mishael YG (2015) Developing polycation-clay sorbents for efficient filtration of diclofenac: effect of dissolved organic matter and comparison to activated carbon. Environ Sci Technol 49(15):9280–9288CrossRefGoogle Scholar
  50. 50.
    Kohay H, Izbitski A, Mishael YG (2017) PEG-PE/clay composite carriers for doxorubicin: effect of composite structure on release, cell interaction and cytotoxicity. Acta Biomater 55:443–454CrossRefGoogle Scholar
  51. 51.
    Kotal M, Bhowmick AK (2015) Polymer nanocomposites from modified clays: recent advances and challenges. Prog Polym Sci 51:127–187CrossRefGoogle Scholar
  52. 52.
    Kurczewska J, Pecyna P, Ratajzak M, Gajecka M, Schroeder G (2017) Halloysite nanotubes as carriers of vancomycin in alginate-based wound dressing. Saudi Pharm J 25(6):911–920CrossRefGoogle Scholar
  53. 53.
    Lal S, Perwez A, Rizvi MA, Datta M (2017) Design and development of a biocompatible montmorillonite PLGA nanocomposites to evaluate in vitro oral delivery of insulin. Appl Clay Sci 147:69–79CrossRefGoogle Scholar
  54. 54.
    Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926CrossRefGoogle Scholar
  55. 55.
    Liu M, Dai L, Shi H, Xiong S, Zhou C (2015) In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering. Mater Sci Eng C 49:700–712CrossRefGoogle Scholar
  56. 56.
    Liu M, Zheng H, Chen J, Lim S, Huang J, Zhou C (2016) Chitosan-chitin nanocrystal composite scaffolds for tissue engineering. Carbohyd Polym 152:832–840CrossRefGoogle Scholar
  57. 57.
    Liu C, Omer AM, Ouyan X (2018) Adsorptive removal of cationic methylene blue dye using carboxymethyl cellulose/k-carrageenan/activated montmorillonite composite beads: isotherm and kinetic studies. Int J Biol Macromol 106:823–833CrossRefGoogle Scholar
  58. 58.
    Lundin JG, McGann CL, Daniels GC, Streifel BC, Wynne JH (2017) Hemostatic kaolin-polyurethane foam composites for multifunctional wound dressing applications. Mater Sci Eng C 79:702–709CrossRefGoogle Scholar
  59. 59.
    Madusanka N, Nalin de Silva KM, Amaratunga G (2015) A curcumin activated carboxymethyl cellulose–montmorillonite clay nanocomposite having enhanced curcumin release in aqueous media. Carbohyd Polym 134:695–699CrossRefGoogle Scholar
  60. 60.
    Mallouk TE, Gavin JA (1998) Molecular recognition in lamellar solids and thin-films. Acc Chem Res 31(5):209–217CrossRefGoogle Scholar
  61. 61.
    Massaro M, Colletti CG, Noto R, Riela S, Poma P, Guernelli S, Parisi F, Milioto S, Lazzara G (2015) Pharmaceutical properties of supramolecular assembly of co-loaded cardanol/triazole-halloysite systems. Int J Pharm 478:476–485CrossRefGoogle Scholar
  62. 62.
    Nair BP, Sindhu M, Nair PD (2016) Polycaprolactone-laponite composite scaffold releasing strontium ranelate for bone tissue engineering applications. Colloids Surf B 143:423–430CrossRefGoogle Scholar
  63. 63.
    Naumenko EA, Guryanov ID, Yendluri R, Lvov YM, Fakhrullin RF (2016) Clay nanotube—biopolymer composite scaffolds for tissue engineering. Nanoscale 8:7257–7271CrossRefGoogle Scholar
  64. 64.
    Nistor MT, Vasile C, Chiriac AP (2015) Hybrid collagen-based hydrogels with embedded montmorillonite nanoparticles. Mater Sci Eng C 53:212–221CrossRefGoogle Scholar
  65. 65.
    Noori MK, Hassan ZM (2015) Nanoclay enhanced the mechanical properties of Poly(Vinyl Alcohol)/Chitosan/Montmorillonite nanocomposite hydrogel as wound dressing. Procedia Mater Sci 11:152–156CrossRefGoogle Scholar
  66. 66.
    Olad A, Azhar FF (2014) The synergetic effect of bioactive ceramic and nanoclay on the properties of chitosan–gelatin/nanohydroxyapatite–montmorillonite scaffold for bone tissue engineering. Ceram Int 40(7):10061–10072CrossRefGoogle Scholar
  67. 67.
    Onyango MS, Mbakop S, Leswifi TY, Mthombeni NH, Setshedi K (2016) Application of polymer-natural clay composite in water treatment. In: Proceedings of the 2016 annual conference on sustainable research and innovationGoogle Scholar
  68. 68.
    Park JK, Choy YB, Oh JM, Kim JY, Hwang SJ, Choy JH (2008) Controlled release of donepezil intercalated in smectite clays. Int J Pharm 359:198–204CrossRefGoogle Scholar
  69. 69.
    Perez CJ, Alvarez VA, Vazquez A (2008) Creep behavior of layered silicate/starch-polycaprolactone blends nanocomposites. Mater Sci Eng A 480:259–265CrossRefGoogle Scholar
  70. 70.
    Pereira FAR, Sousa KS, Cavalcanti GRS, Franca DB, Quieroga LNF, Santos IMG, Fonseca MG, Jaber M (2017) Green biosorbents based on chitosan-montmorillonite beads for anionic dye removal. J Environ Chem Eng 5(4):3309–3318CrossRefGoogle Scholar
  71. 71.
    Piri S, Zanjani ZA, Piri F, Zamani A, Yaftian M, Davari M (2016) Potential of polyaniline modified clay nanocomposite as a selective decontamination adsorbent for Pb(II) ions from contaminated waters; kinetics and thermodynamic study. J Environ Health Sci Eng 14:1–20Google Scholar
  72. 72.
    Rafiei HR, Shirvani M, Ogunseitan OA (2016) Removal of lead from aqueous solutions by a poly(acrylic acid)/bentonite nanocomposite. Appl Water Sci 6(4):331–338CrossRefGoogle Scholar
  73. 73.
    Sabbagh N, Akbari A, Arsalani N, Eftekhari-Sis B, Hamishekar H (2017) Halloysite-based hybrid bionanocomposite hydrogels as potential drug delivery systems. Appl Clay Sci 148:48–55CrossRefGoogle Scholar
  74. 74.
    Salcedo I, Sandri G, Aguzzi C, Bonferoni C, Cerezo P, Sanchez-Espejo P, Viseras C (2014) Intestinal permeability of oxytetracycline from chitosan-montmorillonite nanocomposites. Colloids Surf B 117:441–448CrossRefGoogle Scholar
  75. 75.
    Samani F, Kokabi M, Soleimani M, Valojerdi MR (2010) Fabrication and Characterization of electrospun fibrous nanocomposite scaffolds based on poly(lactide-co-glycolide)/poly(vinyl alcohol) blends. Polym Int 59:901–909CrossRefGoogle Scholar
  76. 76.
    Saravanan D, Hemalatha R, Sudha PN (2011) Synthesis and characterization of crosslinked chitin/bentonite polymer blend and adsorption studies of Cu (II) and Cr (VI) on chitinGoogle Scholar
  77. 77.
    Sarfraz A, Warsi MF, Sarwar MI, Ishaq M (2012) Improvement in tensile properties of PVC-montmorillonite nanocomposites through controlled uniaxial stretching. Bull Mater Sci 35(4):539–544CrossRefGoogle Scholar
  78. 78.
    Sarkar T, Narayanan N, Solanki PR (2017) Polymer-clay nanocomposite-based acetylcholine esterase biosensor for organophosphorous pesticide detection. Int J Environ Res 11(5–6):591–601CrossRefGoogle Scholar
  79. 79.
    Shabtai IA, Mishael YG (2017) Catalytic polymer-clay composite for enhanced removal and degradation of diazinon. J Hazard Mater 335:135–142CrossRefGoogle Scholar
  80. 80.
    Sirousazar M, Jahani-Javanmardi A, Kheiri F, Hassan ZM (2016) In vitro and in vivo assays on egg white/polyvinyl alcohol/clay nanocomposite hydrogel wound dressings. J Biomater Sci 1–30Google Scholar
  81. 81.
    Styan KE, Martin DJ, Poole-Warren LA (2008) In vitro fibroblast response to polyurethane organosilicate nanocomposites. J Biomed Mater Res A 86(3):571–582CrossRefGoogle Scholar
  82. 82.
    Tiggemann HM, Tomacheski D, Celso F, RIbeiro VF, Bachtigall SMB (2013) Use of wollastonite in a thermoplastic elastomer composition. Polym Testing 32(8):1373–1378CrossRefGoogle Scholar
  83. 83.
    Unuabonah EI, Adewuyi A, Kolawole MO, Omorogie MO, Olatunde OC (2017) Disinfection of water with new chitosan-modified hybrid clay composite adsorbent. Heliyon 3(8):e00379CrossRefGoogle Scholar
  84. 84.
    Uyar G, Kaygusuz H, Erim FB (2016) Methylene blue removal by alginate–clay quasi-cryogel beads. React Funct Polym 106:1–7CrossRefGoogle Scholar
  85. 85.
    Viseras C, Cerezo P, Sanchez R, Salcedo I, Aguzzi C (2010) Current challenges in clay minerals for drug delivery. Appl Clay Sci 48:291–295CrossRefGoogle Scholar
  86. 86.
    Viseras C, Aguzzi C, Cerezo P, Bedmar MC (2008) Biopolymer—clay nanocomposites for controlled drug delivery. Mater Sci Technol 24(9):1020–1026CrossRefGoogle Scholar
  87. 87.
    Vyas V, Kaur T, Thirugnanam A (2017) Chitosan composite three dimensional macrospheric scaffolds for bone tissue engineering. Int J Biol Macromol 104:1946–1954CrossRefGoogle Scholar
  88. 88.
    Wu T-M, Wu C-Y (2006) Biodegradable poly(lactic acid)/chitosan-modified montmorillonite nanocomposites: preparation and characterization. Polym Degrad Stab 91:2198–2204CrossRefGoogle Scholar
  89. 89.
    Yang C, Xue R, Zhang QS, Yang S, Liu P, Chen L, Wang K, Zhang X, Wei Y (2017) Nanoclay cross-linked semi-IPN silk sericin/poly(NIPAm/LMSH) nanocomposite hydrogel: an outstanding antibacterial wound dressing. Mater Sci Eng C 81:303–313CrossRefGoogle Scholar
  90. 90.
    Yang J-H, Lee J-H, Ryu H-J, Elzatahry AA, Alothman ZA, Choy J-H (2016) Drug–clay nanohybrids as sustained delivery systems. Appl Clay Sci 130:20–32CrossRefGoogle Scholar
  91. 91.
    Zanetti M, Lomakin S, Camino G (2000) Polymer layered silicate nanocomposites. Macromol Mater Eng 279(1):1–9CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • K. Sangeetha
    • 1
  • P. Angelin Vinodhini
    • 1
  • P. N. Sudha
    • 1
    Email author
  1. 1.Biomaterials Research LabD.K.M. College for WomenVelloreIndia

Personalised recommendations