Spectroscopy and Microscopy of Eco-friendly Polymer Composites

  • Ashish K. Shukla
  • Chandni Sharma
  • Syed M. S. Abidi
  • Amitabha AcharyaEmail author


Eco-friendly polymer nanocomposites (NCs) are constantly gaining attention for sustainable development considering the growing awareness of environment and eco-friendly waste management issues. Particles at nano-scale, such as nanospheres and nanorods, which are dispersed in a host polymeric medium, have generated intense research interest in the development of polymer NCs because these have shown to significantly enhance the mechanical, electrical and thermal properties of the polymers. Due to these growing interests in NCs, proper molecular characterization of these materials is absolutely essential for better understanding of their properties and also for the development of new materials. This chapter is projected to demonstrate different techniques of isolation and characterization to find out the chemical and topographical information of eco-friendly polymers and their nanocomposites.


Nanocomposites Polysaccharide Polypeptide Spectroscopy Microscopy 

List of Abbreviations


Atomic force microscopy




Bacterial cellulose


Citric acid modified starch nanoparticle


Circular dichroism


Cadium sulfide quantum dot




Cellulose nanocrystals


Cellulose Nanosphere


Cetylpyridinium chloride


Chitin/cashew gum


Dynamic light scattering


Dry-milled corn


Differential scanning calorimetery


Diethylenetriaminepentaacetic acid


Energy dispersive X-ray spectroscopy


Eco-friendly polymer nanocompositess


Functionalized Carbon nanotube


Field emission scanning electron microscope


Fourier-transform infrared spectroscopy


Gum arabic


Graphene oxide




High resolution transmission electron microscope


Inductive coupled plasma mass spectroscopy






Microcrystalline cellulose




3-(trimethoxysilyl)-propyl methacrylate






Nuclear magnetic resonance




Poly(butylene adipate-co-terephthalate)




Pair distance distribution function








Polylactic acid




Polyvinyl alcohol


Regenerated chitin


Small angle X-ray scattering


Spherical cellulose container


Scanning electron microscopy


Sequential liquid-lignin recovery and purification


Soy protein isolate-carbon nanotube


Soy protein isolate–montmorillonite


Superparamagnetic iron oxide


Transmission electron microscopy


Glass-rubber transition


Thermogravimetric analysis


Thermogravimetric-Mass Spectroscopy


Melting point


Unsaturated polyester


Ultraviolet-visible spectroscopy


X-ray diffraction



The authors would like to thank Director, CSIR-IHBT for his constant support and encouragement. AA acknowledges financial assistance in the form of project grant MLP-0201 from CSIR and GAP-0214 (EMR/2016/003027) from DST, Government of India. AKS, CS, SMSA acknowledge Academy of Scientific and Innovative Research (AcSIR) and CSIR-GATE and DBT for their respective JRF fellowship. AKS, CS and SMSA have contributed equally to this book chapter. The CSIR-IHBT communication number of this manuscript is 4254.


  1. 1.
    Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 12(1):1–39CrossRefGoogle Scholar
  2. 2.
    Davidson S (2008) Sustainable bioenergy: genomics and biofuels development. Nat Edu 1(1):175–181Google Scholar
  3. 3.
    Iwata T (2015) Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew Chem Int Ed 54(11):3210–3215CrossRefGoogle Scholar
  4. 4.
    Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50(8):962–1079CrossRefGoogle Scholar
  5. 5.
    Joshi G, Naithani S, Varshney VK, Bisht SS, Rana V, Gupta PK (2015) Synthesis and characterization of carboxymethyl cellulose from office waste paper: a greener approach towards waste management. Waste Manag 38:33–40CrossRefGoogle Scholar
  6. 6.
    Singhsa P, Narain R, Manuspiya H (2018) Physical structure variations of bacterial cellulose produced by different Komagataeibacter xylinus strains and carbon sources in static and agitated conditions. Cellulose 25(3):1571–1581Google Scholar
  7. 7.
    Tuli M, Gurumayum S, Kaur S, Nagal S, Attri I (2015) Isolation and screening of cellulolytic fungi by baiting method from soils of Jalandhar. Res J Pharm Biol Chem Sci 6(2):375–380Google Scholar
  8. 8.
    Singla R, Soni S, Kulurkar PM, Kumari A, Mahesh S, Patial V, Yadav SK (2017) In situ functionalized nanobiocomposites dressings of bamboo cellulose nanocrystals and silver nanoparticles for accelerated wound healing. Carbohydr Polym 155:152–162CrossRefGoogle Scholar
  9. 9.
    Phanthong P, Reubroycharoen P, Hao X, Xu G, Abudula A, Guan G (2018) Nanocellulose: extraction and application. CRC 1(1):32–43Google Scholar
  10. 10.
    Fatah IYA, Khalil HPS, Hossain MS, Aziz AA, Davoudpour Y, Dungani R, Bhat A (2014) Exploration of a chemo-mechanical technique for the isolation of nanofibrillated cellulosic fiber from oil palm empty fruit bunch as a reinforcing agent in composites materials. Polymers 6(10):2611–2624CrossRefGoogle Scholar
  11. 11.
    Shao C, Wang M, Chang H, Xu F, Yang J (2017) A self-healing cellulose nanocrystal-poly (ethylene glycol) nanocomposite hydrogel via diels-alder click reaction. ACS Sustain Chem Eng 5(7):6167–6174CrossRefGoogle Scholar
  12. 12.
    Li J, Wei X, Wang Q, Chen J, Chang G, Kong L, Liu Y (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90(4):1609–1613CrossRefGoogle Scholar
  13. 13.
    Wang W, Mozuch MD, Sabo RC, Kersten P, Zhu JY, Jin Y (2015) Production of cellulose nanofibrils from bleached eucalyptus fibers by hyperthermostable endoglucanase treatment and subsequent microfluidization. Cellulose 22(1):351–361Google Scholar
  14. 14.
    Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99(6):1664–1671CrossRefGoogle Scholar
  15. 15.
    Chen L, Wang Q, Hirth K, Baez C, Agarwal UP, Zhu JY (2015) Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22(3):1753–1762CrossRefGoogle Scholar
  16. 16.
    Lindblad Soderqvist M, Albertsson AC, Ranucci E, Laus M, Giani E (2005) Biodegradable polymers from renewable sources: rheological characterization of hemicellulose-based hydrogels. Biomacromolecules 6(2):684–690CrossRefGoogle Scholar
  17. 17.
    Muchlisyam JS, Harahap U (2016) Hemicellulose: Isolation and its application in pharmacy. Handbook of sustainable polymers: Processing and applications, p 305–339Google Scholar
  18. 18.
    Dereca W, Nuruddin Md, Mahesh H, Alfred T-N, Shaik J (2015) Extraction and characterization of lignin from different biomass resources. JMRT 4(1):26–32CrossRefGoogle Scholar
  19. 19.
    Hu L, Pan H, Zhou Y, Zhang M (2011) Methods to improve lignin’s reactivity as a phenol substitute and as a replacement for other phenolic compounds: a brief review. BioResources 6(3):3515–3525Google Scholar
  20. 20.
    Kuhad R, Singh A (2007) Lignocellulose biotechnology: future prospects. I.K. International Publishing House, DelhiGoogle Scholar
  21. 21.
    Harmsen PFH, Huijgen WJJ, Bermúdez López LM, Bakker RRC (2010) Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Energy Research Centre of the Netherlands (ECN), ECN-E–10-013Google Scholar
  22. 22.
    Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102(5):1368–1376CrossRefGoogle Scholar
  23. 23.
    Velez J, Thies MC (2016) Liquid lignin from the SLRP process: the effect of process conditions and black liquor properties. J Wood Chem Technol 36:27–41CrossRefGoogle Scholar
  24. 24.
    Shi H, Fatehi P, Xiao H, Ni Y (2012) A process for isolating lignin of pre-hydrolysis liquor of Kraft pulping process based on surfactant and calcium oxide treatments. Biochem Eng J68:19–24CrossRefGoogle Scholar
  25. 25.
    Zhou L, Santomauro F, Fan J, Macquarrie D, Clark J, Chuck CJ, Budarin V (2017) Fast microwave-assisted acidolysis: a new biorefinery approach for the zero-waste utilisation of lignocellulosic biomass to produce high quality lignin and fermentable saccharides. Faraday Discuss 202:351–370CrossRefGoogle Scholar
  26. 26.
    Bychkov AL, Podgorbunskikh EM, Ryabchikova EI, Lomovsky OI (2018) The role of mechanical action in the process of the thermomechanical isolation of lignin. Cellulose 25:1–5CrossRefGoogle Scholar
  27. 27.
    Reddy DK, Bhotmange MG (2013) Isolation of starch from rice (Oryza sativa L.) and its morphological study using scanning electron microscopy. IJAFST 4(9): 859–866Google Scholar
  28. 28.
    El-Sheikh Manal A (2017) New technique in starch nanoparticles synthesis. Carbohydr Polym 176:214–219Google Scholar
  29. 29.
    Chen Y, Liu C, Chang PR, Anderson DP, Huneault MA (2009) Pea starch-based composite films with pea hull fibers and pea hull fiber-derived nanowhiskers. Polym Eng Sci 49(2):369–378CrossRefGoogle Scholar
  30. 30.
    Zheng H, Ai F, Chang PR, Huang J, Dufresne A (2009) Structure and properties of starch nanocrystal-reinforced soy protein plastics. Polym Composite 30(4):474–480Google Scholar
  31. 31.
    Kim J-Y, Park D-J, Lim S-T (2008) Fragmentation of waxy rice starch granules by enzymatic hydrolysis. Cereal Chem 85(2):182–187CrossRefGoogle Scholar
  32. 32.
    Liu D, Wu Q, Chen H, Chang RR (2009) Transitional properties of starch colloid with particle size reduction from micro to nanometer. J Colloid Interface Sci 339(1):117–124CrossRefGoogle Scholar
  33. 33.
    LeCorre D, Vahanian E, Dufresne A, Bras J (2012) Enzymatic pretreatment for preparing starch nanocrystals. Biomacromolecules 13(1):132–137CrossRefGoogle Scholar
  34. 34.
    Espinosa Solis V, Jane J, Bello Perez LA (2009) Physicochemical characteristics of starches from unripe fruits of mango and banana. Starke 61(5):291–299Google Scholar
  35. 35.
    Haque S, Md S, Sahni JK, Ali J, Baboota S (2014) Development and evaluation of brain targeted intranasal alginate nanoparticles for treatment of depression. J Psychiatr Res 48(1):1–12CrossRefGoogle Scholar
  36. 36.
    Xu X, Qu T, Fan L, Chen X, Gao M, Zhang J, Guo T (2016) Preparation of pH-and magnetism-responsive sodium alginate/Fe3O4@ HNTs nanocomposite beads for controlled release of granulysin. RSC Adv 6(113):111747–111753CrossRefGoogle Scholar
  37. 37.
    Anderson TJ, Lamsal BP (2011) Zein extraction from corn, corn products, and coproducts and modifications for various applications: a review. Cereal Chem 88(2):159–173CrossRefGoogle Scholar
  38. 38.
    Dickey LC, Parris N, Craig JC, Kurantz MJ (2001) Ethanolic extraction of zein from maize. Ind Crops Prod 13(1):67–76CrossRefGoogle Scholar
  39. 39.
    Preece KE, Hooshyar N, Zuidam NJ (2017) Whole soybean protein extraction processes: a review. Innovative Food Sci Emerg Technol 43:163–172CrossRefGoogle Scholar
  40. 40.
    Schmidt MM, Dornelles RCP, Mello RO, Kubota EH, Mazutti MA, Kempka AP, Demiate IM (2016) Collagen extraction process. Int Food Res J 23(3):913–922Google Scholar
  41. 41.
    Shyni K, Hema GS, Ninan G, Mathew S, Joshy CG, Lakshmanan PT (2014) Isolation and characterization of gelatin from the skins of skipjack tuna (Katsuwonus pelamis), dog shark (Scoliodon sorrakowah), and rohu (Labeo rohita). Food Hydrocoll 39:68–76CrossRefGoogle Scholar
  42. 42.
    Anchana D, Kamatchi P, Leela K (2016) Extraction, characterization and application of gelatin from Carcharhinus amblyrhyncho and Sphyraena barracuda. IOSR-JBB 2(6):40–49Google Scholar
  43. 43.
    Du L, Keplová L, Khiari Z, Betti M (2014) Preparation and characterization of gelatin from collagen biomass obtained through a pH-shifting process of mechanically separated turkey meat. Poult Sci 93(4):989–1000CrossRefGoogle Scholar
  44. 44.
    Fernando LAT, Poblete MRS, Ongkiko AGM, Diaz LJL (2016) Chitin extraction and synthesis of chitin-based polymer films from Philippine Blue Swimming Crab (Portunus pelagicus) shells. Procedia Chem 19:462–468CrossRefGoogle Scholar
  45. 45.
    Kumari S, Rath PK (2014) Extraction and characterization of chitin and chitosan from (Labeo rohit) fish scales. Procedia Materials Science 6:482–489CrossRefGoogle Scholar
  46. 46.
    Xiao-Zhou S, Hong-Ru W, Mian H (2014) Characterization of the casein/keratin self-assembly nanomicelles. J Nanomater 2014(183815):1–7CrossRefGoogle Scholar
  47. 47.
    Namvar F, Azizi S, Rahman HS, Mohamad R, Rasedee A, Soltani M, Rahim RA (2016) Green synthesis, characterization, and anticancer activity of hyaluronan/zinc oxide nanocomposite. OncoTargets Ther 9:4549CrossRefGoogle Scholar
  48. 48.
    Amagai I, Tashiro Y, Ogawa H (2009) Improvement of the extraction procedure for hyaluronan from fish eyeball and the molecular characterization. Fish Sci 75(3):805–810CrossRefGoogle Scholar
  49. 49.
    Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21(14):6642–6646CrossRefGoogle Scholar
  50. 50.
    Huang HC, Chen LC, Lin SB, Hsu CP, Chen HH (2010) In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Bioresour Technol 101(15):6084–6091CrossRefGoogle Scholar
  51. 51.
    Zeng X, Small DP, Wan W (2011) Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohydr Polym 85(3):506–513CrossRefGoogle Scholar
  52. 52.
    Sheoran SK, Dubey KK, Tiwari DP, Singh BP (2012) Directive production of pullulan by altering cheap source of carbons and nitrogen at 5l bioreactor level. ISRN Chemical Engineering 2012:1–5Google Scholar
  53. 53.
    Shehata AN, Darwish DA, Masoud HM (2016) Extraction, purification and characterization of endo-acting pullulanase Type I from white edible mushrooms. J Appl Pharm Sci 6(01):147–152Google Scholar
  54. 54.
    Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9(5):552–571Google Scholar
  55. 55.
    Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161(2):505–522CrossRefGoogle Scholar
  56. 56.
    Erbetta CDAC, Alves RJ, Resende JM, de Souza Freitas RF, de Sousa RG (2012) Synthesis and characterization of poly(D, L-lactide-co-glycolide) copolymer. J Biomater Nanobiotechnol 3(02):208CrossRefGoogle Scholar
  57. 57.
    Beg MDH, Alam AM, Yunus RM, Mina MF (2015) Improvement of interaction between pre-dispersed multi-walled carbon nanotubes and unsaturated polyester resin. J Nanopart Res 17(1):53CrossRefGoogle Scholar
  58. 58.
    Saeid N, Omid Z, Yousef Mojtaba, Saba A, Minoo N (2017) Catalyzed synthesis characterization of a novel lignin-based curing agent for the curing of high-performance epoxy resin. Polymers 9(7):266CrossRefGoogle Scholar
  59. 59.
    Le DM, Nielsen AD, Sørensen HR, Meyer AS (2017) Characterisation of authentic lignin biorefinery samples by Fourier transform infrared spectroscopy and determination of the chemical formula for lignin. BioEnerg Res 10(4):1025–1035CrossRefGoogle Scholar
  60. 60.
    Abraham E, Kam D, Nevo Y, Slattegard R, Rivkin A, Lapidot S, Shoseyov O (2016) Highly modified cellulose nanocrystals and formation of epoxy-nanocrystalline cellulose (CNC) nanocomposites. ACS Appl Mater Interfaces 8(41):28086–28095CrossRefGoogle Scholar
  61. 61.
    Luduena LN, Vecchio A, Stefani PM, Alvarez VA (2013) Extraction of cellulose nanowhiskers from natural fibers and agricultural byproducts. Fibers Polym 14(7):1118–1127CrossRefGoogle Scholar
  62. 62.
    Haafiz MM, Eichhorn SJ, Hassan A, Jawaid M (2013) Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydr Polym 93(2):628–634CrossRefGoogle Scholar
  63. 63.
    Spiridonov VV, Panova IG, Afanasov MI, Zezin SB, Sybachin AV, Yaroslavov AA (2018) Water-Soluble magnetic nanocomposites based on carboxymethyl cellulose and iron (III) oxide. Polym Sci Ser B 60(1):116–121CrossRefGoogle Scholar
  64. 64.
    Cardoso GV, Mello LRDS, Zanatta P, Cava S, Raubach CW, Moreira ML (2018) Physico-chemical description of titanium dioxide–cellulose nanocomposite formation by microwave radiation with high thermal stability. Cellulose 25(4):2331–2341Google Scholar
  65. 65.
    Ayoub A, Venditti RA, Pawlak JJ, Salam A, Hubbe MA (2013) Novel hemicellulose–chitosan biosorbent for water desalination and heavy metal removal. ACS Sustain Chem Eng 1(9):1102–1109CrossRefGoogle Scholar
  66. 66.
    Badshah M, Ullah H, Khan AR, Khan S, Park JK, Khan T (2018) Surface modification and evaluation of bacterial cellulose for drug delivery. Int J Biol Macromol 113:526–533Google Scholar
  67. 67.
    Foong CY, Hamzah MSA, Razak SIA, Saidin S, Nayan NHM (2018) Influence of poly (lactic acid) layer on the physical and antibacterial properties of dry bacterial cellulose sheet for potential acute wound healing materials. Fibers Polym 19(2):263–271CrossRefGoogle Scholar
  68. 68.
    Vijayalakshmi K, Gomathi T, Sudha PN (2014) Preparation and characterization of nanochitosan/sodium alginate/microcrystalline cellulose beads. Der Pharmacia Lettre 6(4):65–77Google Scholar
  69. 69.
    Krishnaveni B, Ragunathan R (2015) Extraction and Characterization of chitin and chitosan from F. solani CBNR BKRR, synthesis of their bionanocomposites and study of their productive application. J Pharm Sci Res 7(4):197–205Google Scholar
  70. 70.
    Shanthi P, Kothai S (2015) Synthesis and characterization of chitosan with incorporated herb—a novel bionano composite. Int J Chemtech Res 8(8):208–214Google Scholar
  71. 71.
    Silva NH, Vilela C, Almeida A, Marrucho IM, Freire CS (2018) Pullulan-based nanocomposite films for functional food packaging: exploiting lysozyme nanofibers as antibacterial and antioxidant reinforcing additives. Food Hydrocoll 77:921–930Google Scholar
  72. 72.
    Mitić Ž, Cakić M, Nikolić GM, Nikolić R, Nikolić GS, Pavlović R, Santaniello E (2011) Synthesis, physicochemical and spectroscopic characterization of copper (II)-polysaccharide pullulan complexes by UV–vis, ATR-FTIR, and EPR. Carbohydr Res 346(3):434–441CrossRefGoogle Scholar
  73. 73.
    Xu F, Yu J, Tesso T, Dowell F, Wang D (2013) Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl Energy 104:801–809CrossRefGoogle Scholar
  74. 74.
    Sills DL, Gossett JM (2012) Using FTIR to predict saccharification from enzymatic hydrolysis of alkali-pretreated biomasses. Biotechnol Bioeng 109(2):353–362CrossRefGoogle Scholar
  75. 75.
    Tian X, Rehmann L, Xu CC, Fang Z (2016) Pretreatment of eastern white pine (Pinus strobes L.) for enzymatic hydrolysis and ethanol production by organic electrolyte solutions. ACS Sustain Chem Eng 4(5):2822–2829CrossRefGoogle Scholar
  76. 76.
    Kubo S, Kadla JF (2005) Hydrogen bonding in lignin: a Fourier transform infrared model compound study. Biomacromolecules 6(5):2815–2821CrossRefGoogle Scholar
  77. 77.
    Ma X, Jian R, Chang PR, Yu J (2008) Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites. Biomacromolecules 9(11):3314–3320CrossRefGoogle Scholar
  78. 78.
    Poletto M, Pistor V, Zattera AJ (2013) Structural characteristics and thermal properties of native cellulose. In: Cellulose-fundamental aspects. InTech, p 45–68Google Scholar
  79. 79.
    El Oudiani A, Chaabouni Y, Msahli S, Sakli F (2011) Crystal transition from cellulose I to cellulose II in NaOH treated Agave americana L. fibre. Carbohydr Polym 86(3):1221–1229CrossRefGoogle Scholar
  80. 80.
    Huang HD, Liu CY, Zhou D, Jiang X, Zhong GJ, Yan DX, Li ZM (2015) Cellulose composite aerogel for highly efficient electromagnetic interference shielding. J Mater Chem A 3(9):4983–4991CrossRefGoogle Scholar
  81. 81.
    Dietrich K, Hernandez-Mejia C, Verschuren P, Rothenberg G, Shiju NR (2017) One-pot selective conversion of hemicellulose to xylitol. Org Process Res Dev 21(2):165–170CrossRefGoogle Scholar
  82. 82.
    Peng XW, Ren JL, Zhong LX, Sun RC (2011) Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Biomacromolecules 12(9):3321–3329CrossRefGoogle Scholar
  83. 83.
    Zhong C, Zhang GC, Liu M, Zheng XT, Han PP, Jia SR (2013) Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production. Appl Microbiol Biotechnol 97(14):6189–6199CrossRefGoogle Scholar
  84. 84.
    Ramírez JAÁ, Hoyos CG, Arroyo S, Cerrutti P, Foresti ML (2016) Acetylation of bacterial cellulose catalyzed by citric acid: use of reaction conditions for tailoring the esterification extent. Carbohydr Polym 153:686–695CrossRefGoogle Scholar
  85. 85.
    Chen K, Ling Y, Cao C, Li X, Chen X, Wang X (2016) Chitosan derivatives/reduced graphene oxide/alginate beads for small-molecule drug delivery. Mater Sci Eng C 69:1222–1228CrossRefGoogle Scholar
  86. 86.
    Ramesan MT, Siji C, Kalaprasad G, Bahuleyan BK, Al-Maghrabi MA (2018) Effect of silver doped zinc oxide as nanofiller for the development of biopolymer nanocomposites from chitin and cashew gum. J Polym Environ 26(7):2983–2991Google Scholar
  87. 87.
    Köhnke J, Fürst C, Unterweger C, Rennhofer H, Lichtenegger HC, Keckes J, Emsenhuber G, Liebner F, Gindl-Altmutter W (2016) Carbon microparticles from organosolv lignin as filler for conducting poly(lactic acid). Polymers 8(6):205Google Scholar
  88. 88.
    Shivananda CS, Rao BL, Madhukumar R, Sarojini BK, Somashekhar R, Asha, S, Sangappa Y (2016) Silk fibroin/pullulan blend films: preparation and characterization. In: AIP conference proceedings, vol 1731(1). AIP Publishing, p 070013Google Scholar
  89. 89.
    Trovatti E, Fernandes SC, Rubatat L, Freire CS, Silvestre AJ, Neto CP (2012) Sustainable nanocomposite films based on bacterial cellulose and pullulan. Cellulose 19(3):729–737CrossRefGoogle Scholar
  90. 90.
    Tzhayik O, Pulidindi IN, Gedanken A (2014) Forming nanospherical cellulose containers. Ind Eng Chem Res 53(36):13871–13880CrossRefGoogle Scholar
  91. 91.
    Lal S, Perwez A, Rizvi MA, Datta M (2017) Design and development of a biocompatible montmorillonite PLGA nanocomposites to evaluate in vitro oral delivery of insulin. Appl Clay Sci 147:69–79CrossRefGoogle Scholar
  92. 92.
    Goundalkar MJ, Corbett DB, Bujanovic BM (2014) Comparative analysis of milled wood lignins (MWLs) isolated from sugar maple (SM) and hot water extracted sugar maple (ESM). Energies 7(3):1363–1375CrossRefGoogle Scholar
  93. 93.
    Pu Y, Cao S, Ragauskas AJ (2011) Application of quantitative 31P NMR in biomass lignin and biofuel precursors characterization. Energy Environ Sci 4(9):3154–3166CrossRefGoogle Scholar
  94. 94.
    Mascheroni E, Rampazzo R, Ortenzi MA, Piva G, Bonetti S, Piergiovanni L (2016) Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate, to be used as coating on flexible food-packaging materials. Cellulose 23(1):779–793CrossRefGoogle Scholar
  95. 95.
    Astruc J, Nagalakshmaiah M, Laroche G, Grandbois M, Elkoun S, Robert M (2017) Isolation of cellulose-II nanospheres from flax stems and their physical and morphological properties. Carbohydr Polym 178:352–359CrossRefGoogle Scholar
  96. 96.
    Kishani S, Vilaplana F, Xu W, Xu C, Wagberg  (2018) Solubility of softwood hemicelluloses. Biomacromolecules 19(4):1245–1255Google Scholar
  97. 97.
    Madhusudhan KN, Meghana PB, Vinaya Rani G, Moorthy SM, Mary-Josepha AV (2017) Extraction and characterization of chitin and chitosan from Aspergillus niger, synthesis of silver-chitosan nanocomposites and evaluation of their antimicrobial potential. Journal of Advances in Biotechnology  6(3):939–945CrossRefGoogle Scholar
  98. 98.
    Mushi NE, Utsel S, Berglund LA (2014) Nanostructured biocomposite films of high toughness based on native chitin nanofibers and chitosan. Front Chem 2(99):1–11CrossRefGoogle Scholar
  99. 99.
    Coseri S, Spatareanu A, Sacarescu L, Socoliuc V, Sorin Stratulat I, Harabagiu V (2016) Pullulan: a versatile coating agent for superparamagnetic iron oxide nanoparticles. J Appl Polym Sci 133(5):42926(1–9)Google Scholar
  100. 100.
    Li G, Sun Y, Liu H (2018) Gold-carboxymethyl cellulose nanocomposites greenly synthesized for fluorescent sensitive detection of Hg(II). J Cluster Sci 29(1):177–184CrossRefGoogle Scholar
  101. 101.
    Li J, Zhang J, Zha S, Gao Q, Li J, Zhang Q (2017) Fast curing biobased phenolic resins via lignin demethylated under mild reaction condition. Polymers 9(9):428CrossRefGoogle Scholar
  102. 102.
    Anandhavelu S, Thambidurai S (2012) Preparation of chitosan-ZnO nanocomposite from chitin polymer. Adv Mat Res 584:234–238Google Scholar
  103. 103.
    Putnam CD, Hamme M, Hura GL, Tainer JA (2007) X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys 40(3):191–285Google Scholar
  104. 104.
    Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788CrossRefGoogle Scholar
  105. 105.
    Nagalakshmaiah M, Mortha G, Dufresne A (2016) Structural investigation of cellulose nanocrystals extracted from chili leftover and their reinforcement in cariflex-IR rubber latex. Carbohydr Polym 136:945–954CrossRefGoogle Scholar
  106. 106.
    Zhao W, Odelius K, Edlund U, Zhao C, Albertsson AC (2015) In situ synthesis of magnetic field-responsive hemicellulose hydrogels for drug delivery. Biomacromolecules 16(8):2522–2528CrossRefGoogle Scholar
  107. 107.
    Malagurski I, Levic S, Mitric M, Pavlovic V, Dimitrijevic-Brankovic S (2018) Bimetallic alginate nanocomposites: new antimicrobial biomaterials for biomedical application. Mater Lett 212:32–36CrossRefGoogle Scholar
  108. 108.
    Praveen P, Rao V (2014) Synthesis and thermal studies of chitin/AgCl nanocomposite. Procedia Materials Science 5(2014):1155–1159CrossRefGoogle Scholar
  109. 109.
    Deng J, Xiong T, Wang H, Zheng A, Wang Y (2016) Effects of cellulose, hemicellulose, and lignin on the structure and morphology of porous carbons. ACS Sustain Chem Eng 4(7):3750–3756CrossRefGoogle Scholar
  110. 110.
    Gokila S, Gomathi T, Sudha PN, Anil S (2017) Removal of the heavy metal ion chromiuim (VI) using chitosan and alginate nanocomposites. Int J Biol Macromol 104:1459–1468CrossRefGoogle Scholar
  111. 111.
    Morin A, Dufresne A (2002) Nanocomposites of chitin whiskers from Riftia tubes and poly (caprolactone). Macromolecules 35(6):2190–2199CrossRefGoogle Scholar
  112. 112.
    Alahmadi NS, Betts JW, Heinze T, Kelly SM, Koschella A, Wadhawan JD (2018) Synthesis and antimicrobial effects of highly dispersed, cellulose-stabilized silver/cellulose nanocomposites. RSC Adv 8(7):3646–3656CrossRefGoogle Scholar
  113. 113.
    Mathew L, Joshy MK, Joseph R (2011) Isora fibre: a natural reinforcement for the development of high performance engineering materials. In: Cellulose fibers: bio-and nano-polymer composites. Springer, Berlin, Heidelberg, p 291–324Google Scholar
  114. 114.
    Uraki Y, Nemoto J, Otsuka H, Tamai Y, Sugiyama J, Kishimoto T, Shimomura M (2007) Honeycomb-like architecture produced by living bacteria, Gluconacetobacter xylinus. Carbohydr Polym 69(1):1–6CrossRefGoogle Scholar
  115. 115.
    Motshekga SC, Ray SS, Maity A (2018) Synthesis and characterization of alginate beads encapsulated zinc oxide nanoparticles for bacteria disinfection in water. J Colloid Interface Sci 512:686–692CrossRefGoogle Scholar
  116. 116.
    PM V, Thomas S (2011) Preparation and characterization of chitin nanowhiskers and their polymer nanocomposites. Int J Polym Technol 3(1):35–44 Google Scholar
  117. 117.
    Krull SM, Ma Z, Li M, Davé RN, Bilgili E (2016) Preparation and characterization of fast dissolving pullulan films containing BCS class II drug nanoparticles for bioavailability enhancement. Drug Dev Ind Pharm 42(7):1073–1085CrossRefGoogle Scholar
  118. 118.
    Selig MJ, Viamajala S, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2007) Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol Prog 23(6):1333–1339CrossRefGoogle Scholar
  119. 119.
    Yan CF, Yu HY, Yao JM (2015) One-step extraction and functionalization of cellulose nanospheres from lyocell fibers with cellulose II crystal structure. Cellulose 22(6):3773–3788CrossRefGoogle Scholar
  120. 120.
    Parambath Kanoth B, Claudino M, Johansson M, Berglund LA, Zhou Q (2015) Biocomposites from natural rubber: synergistic effects of functionalized cellulose nanocrystals as both reinforcing and cross-linking agents via free-radical thiol–ene chemistry. ACS Appl Mater Interfaces 7(30):16303–16310CrossRefGoogle Scholar
  121. 121.
    Tian D, Hu J, Bao J, Chandra RP, Saddler JN, Canhui Lu (2017) Lignin valorization: lignin nanoparticles as high-value bio-additive for multifunctional nanocomposites. Biotechnol Biofuels 10(1):192CrossRefGoogle Scholar
  122. 122.
    Geng L, Peng X, Zhan C, Naderi A, Sharma PR, Mao Y, Hsiao BS (2017) Structure characterization of cellulose nanofiber hydrogel as functions of concentration and ionic strength. Cellulose 24(12):5417–5429CrossRefGoogle Scholar
  123. 123.
    Vilcinskas K, Zlopasa J, Jansen K, Mulder FM, Picken SJ, Koper GJ (2016) Water sorption and diffusion in (reduced) graphene oxide-alginate biopolymer nanocomposites. Macromol Mater Eng 301(9):1049–1063CrossRefGoogle Scholar
  124. 124.
    Mathew AP, Laborie MPG, Oksman K (2009) Cross-linked chitosan/chitin crystal nanocomposites with improved permeation selectivity and pH stability. Biomacromolecules 10(6):1627–1632CrossRefGoogle Scholar
  125. 125.
    Kittle JD, Wang C, Qian C, Zhang Y, Zhang M, Roman M, Esker AR (2012) Ultrathin chitin films for nanocomposites and biosensors. Biomacromolecules 13(3):714–718CrossRefGoogle Scholar
  126. 126.
    Ashokkumar M, Narayanan NT, Reddy ALM, Gupta BK, Chandrasekaran B, Talapatra S, Thanikaivelan P (2012) Transforming collagen wastes into doped nanocarbons for sustainable energy applications. Green Chem 14(6):1689–1695CrossRefGoogle Scholar
  127. 127.
    Alcântara AC, Darder M, Aranda P, Ruiz-Hitzky E (2016) Effective intercalation of zein into Na-montmorillonite: role of the protein components and use of the developed biointerfaces. Beilstein J Nanotechnol 7:1772CrossRefGoogle Scholar
  128. 128.
    Belbachir K, Noreen R, Gouspillou G, Petibois C (2009) Collagen types analysis and differentiation by FTIR spectroscopy. Anal Bioanal Chem 395(3):829–837CrossRefGoogle Scholar
  129. 129.
    Paschalis EP, Gamsjaeger S, Tatakis DN, Hassler N, Robins SP, Klaushofer K (2015) Fourier transform infrared spectroscopic characterization of mineralizing type I collagen enzymatic trivalent cross-links. Calcif Tissue Int 96(1):18–29CrossRefGoogle Scholar
  130. 130.
    Baek JY, Xing ZC, Kwak G, Yoon KB, Park SY, Park LS, Kang IK (2012) Fabrication and characterization of collagen-immobilized porous PHBV/HA nanocomposite scaffolds for bone tissue engineering. J Nanomater 2012:1–11Google Scholar
  131. 131.
    Zakaria S, Bakar NHA (2015) Extraction and characterization of gelatin from Black tilapia (Oreochromis niloticus) scales and bones. In: International conference on advances in science, engineering, technology & natural resources (ICASETNR-15), Kota Kinabalu (Malaysia), p 77–80Google Scholar
  132. 132.
    Pal A, Bajpai J, Bajpai AK (2018) Easy fabrication and characterization of gelatin nanocarriers and in vitro investigation of swelling controlled release dynamics of paclitaxel. Polym Bull 75(10):4691–4711Google Scholar
  133. 133.
    Picchio ML, Ronco LI, Passeggi MC, Minari RJ, Gugliotta LM (2017) Poly (n-butyl acrylate)–casein nanocomposites as promising candidates for packaging films. J Polym Environ 26(6):2579–2587Google Scholar
  134. 134.
    Zhang F, Ma J, Xu Q, Zhou J, Simion D, Carmen G, Li Y (2016) Correction to hollow casein-based polymeric nanospheres for opaque coatings. ACS Appl Mater Interfaces 8(24):15856–15856Google Scholar
  135. 135.
    Oliveira JL, Campos EVR, Pereira ADES, Pasquoto T, Lima R, Grillo R, Fraceto LF (2018) Zein nanoparticles as eco-friendly carrier systems for botanical repellents aiming sustainable agriculture. J Agric Food Chem 66(6):1330–1340Google Scholar
  136. 136.
    Sadare OO, Daramola MO, Afolabi AS (2015) Preparation and characterization of nanocomposite soy-carbon nanotubes (SPI/CNTs) adhesive from soy protein isolate. In: Proceedings of the world congress on engineering, vol 2. London, U.K., p 1–3Google Scholar
  137. 137.
    Najafizadeha F, Sadjadia MAS, Fatemib SJ, Mobarakehc MK, Afshard RM (2016) A comparison between biocompatibilities of nanocomposites of silica doped in HA/collagen and those doped in HA/gelatin. OJC 32(3):1551–1557CrossRefGoogle Scholar
  138. 138.
    Shakeri A, Radmanesh S (2014) Preparation of cellulose nanofibrils by high-pressure homogenizer and Zein composite films. Adv Mat Res 829:534–538Google Scholar
  139. 139.
    Li S, Zhao Y (2017) Preparation of zein nanoparticles by using solution-enhanced dispersion with supercritical CO2 and elucidation with computational fluid dynamics. Int J Nanomedicine 12:3485CrossRefGoogle Scholar
  140. 140.
    Ding GJ, Zhu YJ, Cheng GF, Ruan YJ, Qi C, Lu BQ, Wu J (2016) Porous microspheres of casein/amorphous calcium phosphate nanocomposite: room temperature synthesis and application in drug delivery. Curr Nanosci 12(1):70–78CrossRefGoogle Scholar
  141. 141.
    Consonni R, Santomo L, Tenni R, Longhi R, Zetta L (1998) Conformational study of a collagen peptide by 1H NMR spectroscopy: observation of the 14N–1H spin-spin coupling of the Arg guanidinium moiety in the triple-helix structure. FEBS Lett 436(2):243–246CrossRefGoogle Scholar
  142. 142.
    Weber F, Böhme J, Scheidt HA, Gründer W, Rammelt S, Hacker M, Huster D (2012) 31P and 13C solid-state NMR spectroscopy to study collagen synthesis and biomineralization in polymer-based bone implants. NMR Biomed 25(3):464–475CrossRefGoogle Scholar
  143. 143.
    Hu X, Ma L, Wang C, Gao C (2009) Gelatin hydrogel prepared by photo-initiated polymerization and loaded with TGF-b1 for cartilage tissue engineering. Macromol Biosci 9(12):1194–1201CrossRefGoogle Scholar
  144. 144.
    Zhong Q, Jin M (2009) Zein nanoparticles produced by liquid–liquid dispersion. Food Hydrocoll 23(8):2380–2387CrossRefGoogle Scholar
  145. 145.
    Chen H, Zhong Q (2015) A novel method of preparing stable zein nanoparticle dispersions for encapsulation of peppermint oil. Food Hydrocoll 43:593–602CrossRefGoogle Scholar
  146. 146.
    Ghazy OA, Nabih S, Abdel‐Moneam YK, Senna MM (2015) Synthesis and characterization of silver/zein nanocomposites and their application. Polym Composite 38(S1):E9–E15Google Scholar
  147. 147.
    Dhandayuthapani B, Poulose AC, Nagaoka Y, Hasumura T, Yoshida Y, Maekawa T, Kumar DS (2012) Biomimetic smart nanocomposite: in vitro biological evaluation of zein electrospun fluorescent nanofiber encapsulated CdS quantum dots. Biofabrication 4(2):025008CrossRefGoogle Scholar
  148. 148.
    Consonni R, Zetta L, Longhi R, Toma L, Zanaboni G, Tenni R (2000) Conformational analysis and stability of collagen peptides by CD and by 1H-and 13C-NMR spectroscopies. Biopolymers 53(1):99–111CrossRefGoogle Scholar
  149. 149.
    Xu Y, Keene DR, Bujnicki JM, Höök M, Lukomski S (2002) Streptococcal Scl1 and Scl2 proteins form collagen-like triple helices. J Biol Chem 277(30):27312–27318CrossRefGoogle Scholar
  150. 150.
    Ahsan SM, Mohan Rao Ch (2016) Structural studies on aqueous gelatin solutions: implications in designing a thermo-responsive nanoparticulate formulation. Int J Biol Macromol 95:1126–1134Google Scholar
  151. 151.
    Muralidharan N, Shakila RJ, Sukumar D, Jeyasekaran G (2013) Skin, bone and muscle collagen extraction from the trash fish, leather jacket (Odonus niger) and their characterization. J Food Sci Technol 50(6):1106–1113CrossRefGoogle Scholar
  152. 152.
    Abdel-Mohsen AM, Jancar J, Abdel-Rahman RM, Vojtek L, Hyršl P, Dušková M, Nejezchlebová H (2017) A novel in situ silver/hyaluronan bio-nanocomposite fabrics for wound and chronic ulcer dressing: in vitro and in vivo evaluations. Int J Pharm 520(1–2):241–253CrossRefGoogle Scholar
  153. 153.
    Zhang L, Ma D, Wang F, Zhang Q (2002) The modification of scaffold material in building artificial dermis. Artif Cells Blood Substit Biotechnol 30(4):319–332CrossRefGoogle Scholar
  154. 154.
    Mizuno K, Hayashi T, Peyton DH, Bächinger HP (2004) Hydroxylation-induced stabilization of the collagen triple helix acetyl-(glycyl-4 (r)-hydroxyprolyl-4 (r)-hydroxyprolyl) 10-nh2 forms a highly stable triple helix. J Biol Chem 279(36):38072–38078CrossRefGoogle Scholar
  155. 155.
    Tampieri A, Celotti G, Landi E, Sandri M, Roveri N, Falini G (2003) Biologically inspired synthesis of bone-like composite: self-assembled collagen fibers/hydroxyapatite nanocrystals. J Biomed Mater Res Part A 67(2):618–625CrossRefGoogle Scholar
  156. 156.
    Kumar P, Sandeep KP, Alavi S, Truong VD, Gorga RE (2010) Preparation and characterization of bio-nanocomposite films based on soy protein isolate and montmorillonite using melt extrusion. J Food Eng 100(3):480–489CrossRefGoogle Scholar
  157. 157.
    Hassenkam T, Fantner GE, Cutroni JA, Weaver JC, Morse DE, Hansma PK (2004) High-resolution AFM imaging of intact and fractured trabecular bone. Bone 35(1), 4–10Google Scholar
  158. 158.
    Zhang J, Senger B, Vautier D, Picart C, Schaaf P, Voegel JC, Lavalle P (2005) Natural polyelectrolyte films based on layer-by layer deposition of collagen and hyaluronic acid. Biomaterials 26(16):3353–3361CrossRefGoogle Scholar
  159. 159.
    Song L, Wang Z, Lamm ME, Yuan L, Tang C (2017) Supramolecular polymer nanocomposites derived from plant oils and cellulose nanocrystals. Macromolecules 50(19):7475–7483CrossRefGoogle Scholar
  160. 160.
    Saengruengrit C, Ritprajak P, Wanichwecharungruang S, Sharma A, Salvan G, Zahn DR, Insin N (2018) The combined magnetic field and iron oxide-PLGA composite particles: effective protein antigen delivery and immune stimulation in dendritic cells. J Colloid Interface Sci 520:101–111Google Scholar
  161. 161.
    Lu Y, Chen Y-C, Zhang P-H (2016) Preparation and characterisation of polylactic acid (PLA)/polycaprolactone (PCL) composite microfbre membranes. Fibres Text East Eur 3(117):17–21Google Scholar
  162. 162.
    Carson L, Kelly-Brown C, Stewart M, Oki A, Regisford G, Luo Z, Bakhmutov VI (2009) Synthesis and characterization of chitosan–carbon nanotube composites. Mater Lett 63(6–7):617–620CrossRefGoogle Scholar
  163. 163.
    Chiu HT, Chen SC (2001) Curing reaction of unsaturated polyester resin modified by dicyclopentadiene. J Polym Res 8(3):183–190CrossRefGoogle Scholar
  164. 164.
    Hazarika D, Karak N (2016) Biodegradable tough waterborne hyperbranched polyester/carbon dot nanocomposite: approach towards an eco-friendly material. Green Chem 18(19):5200–5211CrossRefGoogle Scholar
  165. 165.
    Atila Dinçer C, Yildiz N, Karakeçili A, Aydoğan N, Çalimli A (2017) Synthesis and characterization of Fe3O4-MPTMS-PLGA nanocomposites for anticancer drug loading and release studies. Artif Cells Nanomed Biotechnol 45(7):1408–1414CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ashish K. Shukla
    • 1
    • 2
  • Chandni Sharma
    • 1
    • 2
  • Syed M. S. Abidi
    • 1
    • 2
  • Amitabha Acharya
    • 1
    • 2
    Email author
  1. 1.Biotechnology DivisionCSIR-Institute of Himalayan Bioresource TechnologyPalampurIndia
  2. 2.Academy of Scientific & Innovative Research (AcSIR)CSIR- Institute of Himalayan Bioresource TechnologyPalampurIndia

Personalised recommendations