Synthesis, Characterization and Application of Bio-based Polyurethane Nanocomposites

  • Sonalee DasEmail author
  • Sudheer Kumar
  • Smita Mohanty
  • Sanjay Kumar Nayak


Polyurethane (PUs) is gaining immense interest as a speciality polymer for various high-end applications. Vegetable oil has gained momentous attention as a valuable renewable precursor and a potential alternative to the current petro-based polyol for the synthesis of PUs. The concept of reinforcing nanofiller into vegetable oil-based PU matrix has gained huge research interest for the development of bio-based PU nanocomposites with tailor-made properties. The addition of nanofiller into bio-based PU nanocomposites has led to the improvement of thermal, mechanical, optical and physicochemical properties. This chapter will deal with the detailed insight regarding the synthesis, characterization of bio-based PUs nanocomposites from various vegetable oil incorporated with different nanofillers.


Polyurethane Vegetable oil Nanocomposite Nanofiller 

List of Abbreviations






Vegetable oils


Methylene diisocyanate


Toluene diisocyanate


Hexamethylene diisocyanate


Isophorone diisocyanate


Jatropha curcas oil


Castor oil


Polyurethane/silica nanocomposites


Nano silica


Thermogravimetric analysis


Derivative thermo-gravimetric


Differential scanning calorimetry


Scanning electron microscopy


Transmission electron microscopy


Fourier transform infrared spectroscopy


Activation energy


Melting temperature


Glass transition temperature


Storage modulus


Loss modulus


Modified bio-based polyurethane


Modified castor oil


Hyper branched polyurethane


Graphene oxide


Reduced graphene oxide




Multiwall carbon nanotubes


X-ray diffraction


Brunauer–Emmett–Teller theory


Interpenetrating polymer network






Dynamic mechanical analysis


Aminopropyltriethoxy silane


Waterborne polyurethane


Silylated sodium montmorillonite


Silylated halloysite nanotubes


Palm oil and methylene diisocyanate based polyurethane acrylate


Epoxidized palm oil acrylate


Poly(e-caprolactone) diol




Titanium dioxide


Energy dispersive X-ray spectroscopy


Wide-angle X-ray scattering


E. Globulus derived cellulose nanocrystals


  1. 1.
    Nohra B, Candy L, Blanco JF, Guerin C, Raoul Y, Mouloungui Z (2013) From petrochemical polyurethanes to biobased polyhydroxyurethanes. Macromolecules 46(10):3771–3792CrossRefGoogle Scholar
  2. 2.
    Shen L, Haufe J, Patel MK (2009) Product overview and market projection of emerging bio-based plastics PRO-BIP. Report for European polysaccharide network of excellence (EPNOE) and European Bioplastics 243:1–245Google Scholar
  3. 3.
    Berthier JC (2009) Polyurethane PUR. Techniques de lingénieurGoogle Scholar
  4. 4.
    Bayer O (1947) Das di-isocyanat-polyadditionsverfahren (polyurethane). Angew Chem 59(9):257–272CrossRefGoogle Scholar
  5. 5.
    Jincheng W, Shenglin Y, Guang L, Jianming J (2003) Synthesis of a new-type carbonific and its application in intumescent flame-retardant (IFR)/polyurethane coatings. J Fire Sci 21(4):245–266CrossRefGoogle Scholar
  6. 6.
    Saunders JH, Frisch KC (1964) Polyurethanes: Chemistry and Technology, Part II. Technology Interscience Publishers, New YorkGoogle Scholar
  7. 7.
    Urbanski J, Czerwinski W, Janicka K, Majewska F, Zowall H (1977) Handbook of analysis of synthetic polymers and plastics, UKGoogle Scholar
  8. 8.
    Durganala S (2011) Synthesis of non-halogenated flame retardants for polyurethane foams. Doctoral dissertation, University of DaytonGoogle Scholar
  9. 9.
    Pervin F, Zhou Y, Rangari VK, Jeelani S (2005) Testing and evaluation on the thermal and mechanical properties of carbon nano fiber reinforced SC-15 epoxy. Mater Sci Eng, A 405(1–2):246–253CrossRefGoogle Scholar
  10. 10.
    Thabet A, Mubarak YA, Bakry M (2011) A review of nano-fillers effects on industrial polymers and their characteristics. J Eng Sci 39(2):377–403Google Scholar
  11. 11.
    Peng L, Zhou L, Li Y, Pan F, Zhang S (2011) Synthesis and properties of waterborne polyurethane/attapulgite nanocomposites. Compos Sci Technol 71:1280–1285CrossRefGoogle Scholar
  12. 12.
    Friedrich K, Fakirov S, Zhang Z (eds) (2005) Polymer composites: from nano-to macro-scale. Springer Science & Business MediaGoogle Scholar
  13. 13.
    Pan H, Chen D (2007) Preparation and characterization of waterborne polyurethane/attapulgite nanocomposites. Eur Polym J 43:3766–3772CrossRefGoogle Scholar
  14. 14.
    Chang CW, Lu KT (2012) Natural castor oil based 2-package waterborne polyurethane wood coatings. Prog Org Coat 75(4):435–443CrossRefGoogle Scholar
  15. 15.
    Silva BB, Santana RM, Forte MM (2010) A solventless castor oil-based PU adhesive for wood and foam substrates. Int J Adhes Adhes 30(7):559–565CrossRefGoogle Scholar
  16. 16.
    Xia Y, Larock RC (2010) Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green Chem 12(11):1893–1909CrossRefGoogle Scholar
  17. 17.
    Güner FS, Yağcı Y, Erciyes AT (2006) Polymers from triglyceride oils. Prog Polym Sci 31(7):633–670CrossRefGoogle Scholar
  18. 18.
    Ronda JC, Lligadas G, Galià M, Cádiz V (2011) Vegetable oils as platform chemicals for polymer synthesis. Eur J Lipid Sci Technol 113(1):46–58CrossRefGoogle Scholar
  19. 19.
    Rybak A, Fokou PA, Meier MA (2008) Metathesis as a versatile tool in oleochemistry. Eur J Lipid Sci Technol 110(9):797–804CrossRefGoogle Scholar
  20. 20.
    Henna PH, Larock RC (2007) Rubbery thermosets by ring-opening metathesis polymerization of a functionalized castor oil and cyclooctene. Macromol Mater Eng 292(12):1201–1209CrossRefGoogle Scholar
  21. 21.
    Liu K, Chapman (1997) Hall Press, New YorkGoogle Scholar
  22. 22.
    Sharmin E, Zafar F (2012) Polyurethane: an introduction. INTECH publisher, CroatiaGoogle Scholar
  23. 23.
    Randall D, Lee S (2003) The polyurethanes book. Wiley publishers, New YorkGoogle Scholar
  24. 24.
    Szychers M, Szychers (2013) Handbook of polyurethanes. CRC Press Taylor and Francis, FloridaGoogle Scholar
  25. 25.
    Bagdi K (2010) Role of interactions on the structure and properties of segmented polyurethane elastomersGoogle Scholar
  26. 26.
    Naheed S, Paridah Md, Mohammad J (2014) A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6:2247–2273CrossRefGoogle Scholar
  27. 27.
    Fink JK (2017) Reactive polymers: fundamentals and applications: a concise guide to industrial polymers. William AndrewGoogle Scholar
  28. 28.
    Hojabri L, Kong X, Narine SS (2010) Functional thermoplastics from linear diols and diisocyanates produced entirely from renewable lipid sources. Biomacromol 11(4):911–918CrossRefGoogle Scholar
  29. 29.
    Hojabri L, Kong X, Narine SS (2010) Novel long chain unsaturated diisocyanate from fatty acid: synthesis, characterization, and application in bio-based polyurethane. J Polym Sci, Part A: Polym Chem 48(15):3302–3310CrossRefGoogle Scholar
  30. 30.
    Wool RP (2014) U.S. Patent No. 8,633,257. U.S. Patent and Trademark Office, Washington, D.CGoogle Scholar
  31. 31.
    Kyle DR (1993) U.S. Patent No. 5,234,970. U.S. Patent and Trademark Office, Washington, D.CGoogle Scholar
  32. 32.
    Sahoo S, Kalita H, Mohanty S, Nayak SK (2016) Synthesis of vegetable oil-based polyurethane: a study on curing kinetics behavior. Int J Chem Kinet 48(10):622–634CrossRefGoogle Scholar
  33. 33.
    Das S, Pandey P, Mohanty S, Nayak SK (2015) Influence of NCO/OH and transesterified castor oil on the structure and properties of polyurethane: synthesis and characterization. Mater Express 5(5):377–389CrossRefGoogle Scholar
  34. 34.
    Kaushik A, Singh P (2005) Synthesis and characterization of castor oil/trimethylol propane polyol as raw materials for polyurethanes using time-of-flight mass spectroscopy. Int J Polym Anal Charact 10(5–6):373–386CrossRefGoogle Scholar
  35. 35.
    Mutlu H, Meier MA (2010) Castor oil as a renewable resource for the chemical industry. Eur J Lipid Sci Technol 112(1):10–30CrossRefGoogle Scholar
  36. 36.
    Petrović ZS (2008) Polyurethanes from vegetable oils. Polym Rev 48(1):109–155CrossRefGoogle Scholar
  37. 37.
    Kumar A, Sharma S (2008) An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): a review. Ind Crops Prod 28(1):1–10CrossRefGoogle Scholar
  38. 38.
    Segura-Campos MR, Betancur-Ancona D (2016) The promising future of jatropha curcas: properties and potential applications. Nova Science Publishers Incorporated, Hauppauge, NY, USAGoogle Scholar
  39. 39.
    Abdulla R, Chan ES, Ravindra P (2011) Biodiesel production from jatropha curcas: a critical review. Crit Rev Biotechnol 31(1):53–64CrossRefGoogle Scholar
  40. 40.
    Chen CR, Cheng YJ, Ching YC, Hsiang D, Chang CMJ (2012) Green production of energetic jatropha oil from de-shelled jatropha curcas L. seeds using supercritical carbon dioxide extraction. J Supercrit Fluids 66(1):137–143CrossRefGoogle Scholar
  41. 41.
    Hazmi ASA, Aung MM, Abdullah LC, Salleh MZ, Mahmood MH (2013) Producing jatropha oil-based polyol via epoxidation and ring opening. Ind Crops Prod 50:563–567CrossRefGoogle Scholar
  42. 42.
    Lestari D, Mulder WJ, Sanders JP (2011) Jatropha seed protein functional properties for technical applications. Biochem Eng J 53(3):297–304CrossRefGoogle Scholar
  43. 43.
    Pawlik H, Prociak A (2012) Influence of palm oil-based polyol on the properties of flexible polyurethane foams. J Polym Environ 20(2):438–445CrossRefGoogle Scholar
  44. 44.
    Pillai PK, Li S, Bouzidi L, Narine SS (2016) Solvent-free synthesis of polyols from 1-butene metathesized palm oil for use in polyurethane foams. J Appl Polym Sci 133(23):1–13CrossRefGoogle Scholar
  45. 45.
    Pillai PK, Li S, Bouzidi L, Narine SS (2016) Metathesized palm oil: fractionation strategies for improving functional properties of lipid-based polyols and derived polyurethane foams. Ind Crops Prod 84:273–283CrossRefGoogle Scholar
  46. 46.
    Saalah S, Abdullah LC, Aung MM, Salleh MZ, Biak DRA, Basri M, Jusoh ER (2015) Waterborne polyurethane dispersions synthesized from jatropha oil. Ind Crops Prod 64:194–200CrossRefGoogle Scholar
  47. 47.
    Aung MM, Yaakob Z, Kamarudin S, Abdullah LC (2014) Synthesis and characterization of Jatropha (Jatropha curcas L.) oil based polyurethane wood adhesive. Ind Crops Prod 60:177–185CrossRefGoogle Scholar
  48. 48.
    Gogoi P, Boruah R, Dolui SK (2015) Jatropha curcas oil based alkyd/epoxy/graphene oxide (GO) bionanocomposites: effect of GO on curing, mechanical and thermal properties. Prog Org Coat 84:128–135CrossRefGoogle Scholar
  49. 49.
    Zhang L, Zhang H, Guo J (2012) Synthesis and properties of UV curable polyester-based waterborne polyurethane/functionalized silica composites and morphology of their nanostructured films. Ind Eng Chem Res 51(25):8434–8441CrossRefGoogle Scholar
  50. 50.
    Hsiao S, Ma CM, Tien H, Liao W-H, Yu-Sheng Wang, Shin-Ming Li, Sheng-Chi Yang Chih-Yu Lin, Ruey-Bin Yang (2015) Effect of covalent modification of graphene nanosheets on the electrical property and electromagnetic interference shielding performance of a water-borne polyurethane composite. ACS Appl Mater Interfaces 7(4):2817–2826CrossRefGoogle Scholar
  51. 51.
    Wang C, Xu F, He M, Ding L, Li S, Wei J (2018) Castor oil-based polyurethane/silica nanocomposites: morphology, thermal and mechanical properties. Polym Comp. Scholar
  52. 52.
    Chattopadhyay DK, Webster DC (2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34:1068–1133CrossRefGoogle Scholar
  53. 53.
    Meera KMS, Sankar RM, Paul J, Jaisankara SN, Mandal AB (2014) The influence of applied silica nanoparticles on a bio-renewable castor oil based polyurethane nanocomposite and its physicochemical properties. Phys Chem Chem Phys 16(20):9276–9288CrossRefGoogle Scholar
  54. 54.
    Liu D, Tian H, Zhang L, Chang PR (2008) Structure and properties of blended films prepared from castor oil-based polyurethane/soy protein derivative. Ind Eng Chem Res 47(23):9330–9336CrossRefGoogle Scholar
  55. 55.
    Gu H, Guo J, He Q, Tadakamalla S, Zhang X, Yan X, Huang Y, Colorado HA, Wei S Guo Z (2013) Flame-retardant epoxy resin nanocomposites reinforced with polyaniline-stabilized silica nanoparticles. Ind Eng Chem Res 52(23):7718–7728CrossRefGoogle Scholar
  56. 56.
    Das S, Pandey P, Mohanty S, Nayak SK (2017) Evaluation of biodegradability of green polyurethane/nanosilica composite synthesized from transesterified castor oil and palm oil based isocyanate. Int Biodet Biodeg 117(1):278–288CrossRefGoogle Scholar
  57. 57.
    Filip Z, Hermann S, Demnerov (2008) FT-IR spectroscopic characteristics of differently cultivated Escherichia coli. Czech J Food Sci 26(6):458–463CrossRefGoogle Scholar
  58. 58.
    Fukushima K, Abbate C, Tabuani D, Gennari M, Rizzarelli P, Camino G (2010) Biodegradation trend of poly(e-caprolactone) and nanocomposites. Mat Sci Eng C 30(4):566–574CrossRefGoogle Scholar
  59. 59.
    Kim YD, Kim SC (1998) Effect of chemical structure on the biodegradation of polyurethanes under composting conditions 62:343–352Google Scholar
  60. 60.
    Das S, Pandey P, Mohanty S, Nayak SK (2016) Effect of nanosilica on the physicochemical, morphological and curing characteristics of transesterified castor oil based polyurethane coatings. Prog Org Coat 97:233–243CrossRefGoogle Scholar
  61. 61.
    Thakur S, Karak N (2013) Bio-based tough hyperbranched polyurethane–graphene oxide nanocomposites as advanced shape memory materials. RSC Adv. 3(24):9476–9482CrossRefGoogle Scholar
  62. 62.
    Zhang J, Zhang C, Madbouly SA (2015) In situ polymerization of bio-based thermosetting polyurethane/graphene oxide nanocomposites. J Appl Polym Sci 132(13):1–8Google Scholar
  63. 63.
    Ali A, Yusoh K, Hasany SF (2014) Synthesis and physicochemical behaviour of polyurethane-multiwalled carbon nanotubes nanocomposites based on renewable castor oil polyols. J. Nanomater 2014, Article ID 564384, 9 pagesGoogle Scholar
  64. 64.
    Chen S, Wang Q, Wang T (2012) Damping, thermal, and mechanical properties of carbon nanotubes modified castor oil-based polyurethane/epoxy interpenetrating polymer network composites. Mater Des 38:47–52CrossRefGoogle Scholar
  65. 65.
    Liao L, Li X, Wang Y, Fu H, Li Y (2016) Effects of surface structure and morphology of nanoclays on the properties of jatropha curcas oil-based waterborne polyurethane/clay nanocomposites. Ind Eng Chem Res 55(45):11689–11699CrossRefGoogle Scholar
  66. 66.
    Dzulkifli MH, Yahya MY, Majid RA (2017) Rigid palm oil-based polyurethane foam reinforced with diamine-modified montmorillonite nanoclay. Mater Sci Eng 204. Scholar
  67. 67.
    Adnan S, Maznee TN, Ismail T, Mohd NN, Mariam ND, Nik S, Hanzah NA, Kian YS, Hazimah AH (2016) Development of flexible polyurethane nanostructured biocomposite foams derived from palm olein-based polyol. Adv Mater Sci Eng 2016, Article ID 4316424, 12 pagesGoogle Scholar
  68. 68.
    Nikolaidis AK, Achilias DS, Karayannidis GP (2012) Effect of the type of organic modifier on the polymerization kinetics and the properties of poly(methyl methacrylate)/organomodified montmorillonite nanocomposites. Eur Polym J 48(2):240–251CrossRefGoogle Scholar
  69. 69.
    Zaimahwati AH, Rihayat T, Reflianto D, Gea S (2014–2015) The manufacture of palm oil-based polyurethane nanocomposite with organic montmorillonite nanoparticle as paint coatings. Int J Chem Tech Res 7(5):2537–2544Google Scholar
  70. 70.
    Salih AM, Ahmad MB, Ibrahim NA, Mohd Dahlan KZH, Tajau R, Mahmood MH, Wan MdZWY (2014) Thermal and mechanical properties of palm oil-based polyurethane acrylate/clay nanocomposites prepared by in-situ intercalative method and electron beam radiation. AIP Conf Proc 117:1584Google Scholar
  71. 71.
    Xia Y, Larock RC (2011) Preparation and properties of aqueous castor oil-based polyurethane-silica nanocomposite dispersions through a sol-gel process. Macromol Rapid Commun 32(17):1331–1337CrossRefGoogle Scholar
  72. 72.
    Deka H, Niranjan K (2011) Bio-based hyperbranched polyurethane/clay nanocomposites: adhesive, mechanical, and thermal properties. Polym Adv Technol 22(6):973–980CrossRefGoogle Scholar
  73. 73.
    Sahoo S, Kalita H, Mohanty S, Nayak SK (2018) Shear strength and morphological study of polyurethane-OMMT clay nanocomposite adhesive derived from vegetable oil-based constituents. J Renew Mater 6(1):117–125CrossRefGoogle Scholar
  74. 74.
    Das B, Mandal M, Upadhyay A, Chattopadhyay P, Karak N (2013) Bio-based hyperbranched polyurethane/Fe3O4 nanocomposites: smart antibacterial biomaterials for biomedical devices and implants. Biomed Mater 8(3):1–12CrossRefGoogle Scholar
  75. 75.
    Mohammed RS, Manawwer A, Naser MA (2015) Development of castor oil based poly(urethane-esteramide)/TiO2 nanocomposites as anticorrosive and antimicrobial coatings. J Nanomater 2015, Article ID 745217, 10 pages.
  76. 76.
    Hajipour MJ, Fromm KM, Akbar Ashkarran A (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511CrossRefGoogle Scholar
  77. 77.
    Thakur S, Karak N (2014) Multi-stimuli responsive smart elastomeric hyperbranched polyurethane/reduced graphene oxide nanocomposites. Mater Chem A 2:14867–14875CrossRefGoogle Scholar
  78. 78.
    Ahuja D, Kaushik A (2016) Castor oil-based polyurethane nanocomposites reinforced with organically modified clay: synthesis and characterization. J Elastomers Plast 49(4):1–17Google Scholar
  79. 79.
    Peng Gao Z, Jun Zhong T, Sun J, Wang X, Yue C (2012) Biocompatible elastomer of waterborne polyurethane based on castor oil and polyethylene glycol with cellulose nanocrystals. Carbohyd Polym 87(3):2068–2075CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sonalee Das
    • 1
    Email author
  • Sudheer Kumar
    • 1
  • Smita Mohanty
    • 1
  • Sanjay Kumar Nayak
    • 1
  1. 1.Laboratory for Advanced Research in Polymeric MaterialsCentral Institute of Plastics Engineering and TechnologyBhubaneswarIndia

Personalised recommendations