Advertisement

Impact of Nanoparticle Shape, Size, and Properties of Silver Nanocomposites and Their Applications

  • Arpita Hazra Chowdhury
  • Rinku Debnath
  • Sk. Manirul IslamEmail author
  • Tanima SahaEmail author
Chapter

Abstract

Silver-containing nanocomposites have recently attracted the immense attention of researchers from different fields because of the dual benefits from silver nanoparticle and matrix elements. There are four types of synthetic methods or silver nanoparticles and three types of composite systems currently used for their preparations, which are briefly described in this chapter. Silver nanoparticles are widely used for biomedical applications due to their antibacterial and antiviral properties. In addition, silver nanocomposites are extensively used in other fields including, food industries, textile industries, electronic industries etc. Silver nanoparticles embedded polymer matrix composites are promising candidates for biomaterials, photovoltaic materials, and catalysts. This chapter describes different methods employed for synthesis of silver nanoparticle-containing nanocomposites and their potential applications.

Keywords

Silver nanocomposite Nanoparticle Synthetic methods Applications 

References

  1. 1.
    Khademhosseini A, Langer R (2006) Drug delivery and tissue engineering. Chem Eng Prog 102(2):38–42Google Scholar
  2. 2.
    Faraday M (1857) The bakerian lecture: experimental relations of gold (and other metals) to light. Philos Trans R Soc Lond 147:145CrossRefGoogle Scholar
  3. 3.
    Konrad MP, Doherty AP, Bell SEJ (2013) Stable and uniform SERS signals from self assembled two-dimensional interfacial arrays of optically coupled Ag nanoparticles. Anal Chem 85:6783–6789CrossRefGoogle Scholar
  4. 4.
    Meheretu GM, Cialla D, Popp J (2014) Surface enhanced raman spectroscopy on silver nanoparticles. Inter J Biochemistry Biophysics 2:63–67Google Scholar
  5. 5.
    Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20:8856–8874CrossRefGoogle Scholar
  6. 6.
    Jana S, Pal T (2007) Synthesis, characterization and catalytic application of silver nanoshell coated functionalized polystyrene beads. J Nanosci Nanotechnol 7:2151–2156CrossRefGoogle Scholar
  7. 7.
    Stiufiuc R, Iacovita C, Lucaciu CM, Stiufiuc G, Dutu AG, Braescu C, Leopold N (2013) SER-sactive silver colloids prepared by reduction of silver nitrate with short-chain polyethylene glycol. Nanoscale Res Lett 8:47CrossRefGoogle Scholar
  8. 8.
    Evtugyn GA, Shamagsumova RV, Padnya PV, Stoikov II, Antipin IS (2014) Cholinesterase sensor based on glassy carbon electrode modified with Ag nanoparticles decorated with macrocyclic ligands. Talanta 127:9–17CrossRefGoogle Scholar
  9. 9.
    Thanha NTK, Green LAW (2010) Functionalisation of nanoparticles for biomedical applications. Nano Today 5:213–230CrossRefGoogle Scholar
  10. 10.
    Alon N, Miroshnikov Y, Perkas N, Nissan I, Gedanken A, Shefi (2014) Substrates coated with silver nanoparticles as a neuronal regenerative material. Int J Nanomed 9:23–31Google Scholar
  11. 11.
    Bu Y, Lee S (2012) Influence of dopamine concentration and surface coverage of Au shell on the optical properties of Au, Ag, and AgcoreAushell nanoparticles. ACS Appl Mater Interfaces 4:3923–3931CrossRefGoogle Scholar
  12. 12.
    Luo Y, Ma L, Zhang X, Liang A, Jiang Z (2015) SERS detection of dopamine using label free acridine red as molecular probe in reduced graphene oxide/silver nanotriangle sol substrate. Nanoscale Res Lett 10:230CrossRefGoogle Scholar
  13. 13.
    Rivero PJ, Urrutia A, Goicoechea J, Matias IR, Arregui FJ (2013) A lossy mode resonance optical sensor using silver nanoparticles-loaded films for monitoring human breathing. Sens Actuators B 187:40–44CrossRefGoogle Scholar
  14. 14.
    El-Nour KMM, Eftaiha A, Al-Reda A, Ammar AA (2010) Synthesis and applications of silver nanoparticles. Arabian J Chem 3:135–140CrossRefGoogle Scholar
  15. 15.
    Smetana AB, Klabunde KJ, Sorensen CM (2005) Synthesis of spherical silver nanoparticles by digestive ripening, stabilization with various agents, and their 3-D and 2-D superlattice formation. J Colloid Interface Sci 284:521–526CrossRefGoogle Scholar
  16. 16.
    Wakuda D, Kim KS, Suganuma K (2008) Room temperature sintering of Ag nanoparticles by drying solvent. Scrip Mater 59:649–652CrossRefGoogle Scholar
  17. 17.
    Lee H, Chou KS (2005) Inkjet printing of nanosized silver colloids. Nanotechnology 16:2436–2441CrossRefGoogle Scholar
  18. 18.
    Anna Z, Ewa S, Adriana Z, Maria G, Jan H (2009) Preparation of silver nanoparticles with controlled particle size. Procedia Chem 1:1560–1566CrossRefGoogle Scholar
  19. 19.
    Twardowski TE (2007) Introduction to nanocomposite materials: properties, processing, characterization. Destech Publications, Incorporated, Lancaster, PAGoogle Scholar
  20. 20.
    Pina S, Oliveira JM, Reis RL (2015) Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater 27:1143–1169CrossRefGoogle Scholar
  21. 21.
    Rafiee MA, Rafiee J, Wang Z, Song H, Yu Z-Z, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890CrossRefGoogle Scholar
  22. 22.
    Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci, Part B Polym Phys 52:791–806CrossRefGoogle Scholar
  23. 23.
    Hu H, Onyebueke L, Abatan A (2010) Characterizing and modeling mechanical properties of nanocomposites-review and evaluation. J Miner Mater Charact Eng 9:275Google Scholar
  24. 24.
    Gleiter H (1992) Materials with ultrafine microstructures: retrospectives and perspectives. Nanostruct Mater 1:1–19CrossRefGoogle Scholar
  25. 25.
    Anna Z, Ewa S, Adriana Z, Maria G, Jan H (2009) Preparation of silver nanoparticles with controlled particle size. ProcediaChem 1:1560–1566Google Scholar
  26. 26.
    Gurav AS, Kodas TT, Wang LM, Kauppinen EI, Joutsensaari J (1994) Generation of nanometer-size fullerene particles via vapor condensation. J Joutsensaari Chem Phys Lett 218:304–308CrossRefGoogle Scholar
  27. 27.
    Kruis F, Fissan H, Rellinghaus B (2000) Sintering and evaporation characteristics of gas-phase synthesis of size selected PbS nanoparticles. Mater Sci Eng B 69:329–334CrossRefGoogle Scholar
  28. 28.
    Magnusson MH, Deppert K, Malm JO, Bovin JO, Samuelson L (1999) Gold nanoparticles: production, reshaping, and thermal charging. J Nanoparticle Res 1:243–251CrossRefGoogle Scholar
  29. 29.
    Mafune F, Takeda J, Kondow T, Sawabe H (2000) Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 104:9111–9117Google Scholar
  30. 30.
    Sylvestre JP, Kabashin AV, Sacher E, Meunier M, Luong JHT (2004) Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins. J Am Chem 126:7176–7177CrossRefGoogle Scholar
  31. 31.
    Pacioni NL, Borsarelli CD, Rey V, Veglia AV (2015) Synthetic routes for the preparation of silver nanoparticles: a mechanistic perspective. In: Udekwu KI, Alarcón EL, Griffith M (eds) Silver nanoparticle applications: in the fabrication and design of medical and biosensing devices. Springer International Publishing AG, Switzerland, p 13CrossRefGoogle Scholar
  32. 32.
    Huang H, Yang Y (2008) Preparation of silver nanoparticles in inorganic clay suspensions. Compos Sci Technol 68:2948–2953CrossRefGoogle Scholar
  33. 33.
    Zhang M, Zhang K, De Gusseme B, Verstraete W, Field R (2014) The antibacterial and anti-biofouling performance of biogenic silver nanoparticles by lactobacillus fermentum. Biofouling 30:347–357CrossRefGoogle Scholar
  34. 34.
    Priyadarshini S, Gopinath V, MeeraPriyadharsshini N, MubarakAli D, Velusamy P (2013) Synthesis of anisotropic silvernanoparticles using novel strain, bacillus flexus and its biomedical application. Colloids Surf B 102:232–237CrossRefGoogle Scholar
  35. 35.
    Gurunathan S, Kalishwaralal K, Vaidyanathan R et al (2009) Biosynthesis, purification and characterization of silvernanoparticles using Escherichia coli. Colloids Surf B Biointerfaces 74:328–335CrossRefGoogle Scholar
  36. 36.
    Minaeian S, Shahverdi AR, Nohi AS, Shahverdi HR (2008) Extracellular biosynthesis of silver nanoparticles by somebacteria. J Sci (Islamic Azad University) 17:1–4Google Scholar
  37. 37.
    Vahabi K, Ali Mansoori G, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus, trichodermareesei. Insciences J 1:65–79CrossRefGoogle Scholar
  38. 38.
    Ahmad T, Wani IA, Manzoor N, Ahmed J, Asiri AM (2013) Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Colloids Surf B 107:227–234CrossRefGoogle Scholar
  39. 39.
    Syed A, Saraswati S, Kundu GC, Ahmad A (2013) Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochim Acta Part A Mol Biomol Spectrosc 114:144–147CrossRefGoogle Scholar
  40. 40.
    Kalishwaralal K, Deepak V, Pandian SRK, Kartikeyan B, Kottaisamy M, Gurunathan S (2010) Biosynthesis of silver and gold nanoparticles using brevibacterium casei. Colloids Surf B Biointerfaces 77:257–262CrossRefGoogle Scholar
  41. 41.
    Hazra Chowdhury I, Ghosh S, Roy M, Naskar MK (2015) Green synthesis of water-dispersible silver nanoparticles at room temperature using green carambola (star fruit) extract. J Sol-Gel Sci Technol 73:199–207CrossRefGoogle Scholar
  42. 42.
    Ashokkumar S, Ravi S, Kathiravan V, Velmurugan S (2015) Synthesis of silver nanoparticles using A. indicum leaf extract and their antibacterial activity. Spectrochim Acta Part A Mol Biomol Spectroscopy 134:34–39CrossRefGoogle Scholar
  43. 43.
    Raut RW, Mendhulkar VD, Kashid SB (2014) Photosensitized synthesis of silver nanoparticles using withania somnifera leaf powder and silver nitrate. J Photochem Photobiol, B 132:45–55CrossRefGoogle Scholar
  44. 44.
    Rajakumar G, Abdul Rahuman A (2011) Larvicidal activity of synthesized silver nanoparticles using eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop 118:196–203CrossRefGoogle Scholar
  45. 45.
    Santhoshkumar T, Rahuman AA, Rajakumar G, MarimuthuS Bagavan A, Jayaseelan C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108:693–702CrossRefGoogle Scholar
  46. 46.
    Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K (2011) Biosynthesis of silver nanoparticles using Citrussinensis peel extract and its antibacterial activity. SpectrochemActa A Mol Biomol Spectrosc 79:594–598CrossRefGoogle Scholar
  47. 47.
    Shankar SS, Ahmad A, Sastry M (2003) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19:1627–1631CrossRefGoogle Scholar
  48. 48.
    Dubey SP, Lahtinen M, Sillianpaa M (2010) Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem 45:1065–1071CrossRefGoogle Scholar
  49. 49.
    Suna Q, Cai X, Li J, Zheng M, Chenb Z, Yu CP (2014) Greensynthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloid Surf A Physicochem Eng Aspects 444:226–231CrossRefGoogle Scholar
  50. 50.
    Gopinatha V, Ali MD, Priyadarshini S, Thajuddinb N, MeeraPriyadharsshini N, Velusamy P (2012) Biosynthesis of silvernanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach. Colloid Surf B Biointerface 96:69–74CrossRefGoogle Scholar
  51. 51.
    Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408:999–1006CrossRefGoogle Scholar
  52. 52.
    Creighton JA, Blatchford CG, Albrecht MG (1979) Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J Chem Soc Faraday Trans 75:790–798CrossRefGoogle Scholar
  53. 53.
    Sui Z, Chen X, Wang L, Chai Y, Yang C, Zhao J (2005) An improved approach for synthesis of positively charged silver nanoparticles. ChemLett 34:100–101Google Scholar
  54. 54.
    Shi Y, Lv L, Wang H (2009) A facile approach to synthesize silver nanorods capped with sodium tripolyphosphate. Mater Lett 63:2698–2700CrossRefGoogle Scholar
  55. 55.
    Horiuchi Y, Shimada M, Kamegawa T, Mori K, Yamashita H (2009) Size-controlled synthesis of silver nanoparticles on Ti-containing mesoporous silica thin film and photoluminescence enhancement of rhodamine 6G dyes by surface plasmon resonance. J Mater Chem 19:6745–6749CrossRefGoogle Scholar
  56. 56.
    Zielinska A, Skwarek E, Zaleska A, Gazda M, Hupka J (2009) Preparation of silver nanoparticle. ProcChem 1:1560Google Scholar
  57. 57.
    Henglein A, Giersig M (1999) Formation of colloidal silver nanoparticles. Cappingaction of citrate. J Phys Chem B 103:9533–9539CrossRefGoogle Scholar
  58. 58.
    Pietrobon B, Kitaev V (2008) Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties. Chem Mater 20:5186–5190CrossRefGoogle Scholar
  59. 59.
    Mayer AB, Hausner SH, Mark JE (2002) Colloidal silver nanoparticles generated in the presence of protective cationic polyelectrolytes. Poly J 32:15–22CrossRefGoogle Scholar
  60. 60.
    Sivaraman SK, Elango I, Kumar S, Santhanam V (1997) Room-temperature synthesis of gold nanoparticles—size-control by slow addition. CurrSci 7:1055–1059Google Scholar
  61. 61.
    Yoosaf K, Ipe BI, Suresh CH, Thomas KG (2007) In situ synthesis of metal nanoparticles and selective naked-eye detection of lead ions from aqueous media. J PhysChem C 111:12839–12847Google Scholar
  62. 62.
    Chou KS, Lai YS (2004) Effect of polyvinyl pyrrolidone molecular weights on the formation of nanosized silver colloids. Mater Chem Phys 83:82–88CrossRefGoogle Scholar
  63. 63.
    Chou KS, Lu YC, Lee HH (2005) Effect of alkaline ion on the mechanism and kinetics of chemical reduction of silver. Mater Chem Phys 94:429–433CrossRefGoogle Scholar
  64. 64.
    Chen SF, Zhang H (2012) Aggregation kinetics of nanosilver in different watercondition. Adv Nat Sci Nanosci Nanotechnol 3:035006-1–035006-7CrossRefGoogle Scholar
  65. 65.
    Dang TMD, Le TTT, Blance EF, Dang MC (2012) Influence of surfactant on the preparation of silvernanoparticles by polyol method. Adv Nat Sci Nanosci Nanotechnol 3:035004-1–035004-4CrossRefGoogle Scholar
  66. 66.
    Patil RS, Kokate MR, Jambhale C, Pawar SM, Han SH, Kolekar SS (2012) One-pot synthesis of PVA-capped silvernanoparticles their characterization and biomedicalapplication. Adv. Nat. Sci.: Nanosci Nanotechnol. 3:015013-1–015013-7Google Scholar
  67. 67.
    Zorn K, Giorgio S, Halwax E, Henry CR, Grönbeck H, Rupprechter G (2011) CO oxidation on technological Pd–Al2O3 catalysts: oxidation state and activity. J Phys Chem C 115:1103–1111CrossRefGoogle Scholar
  68. 68.
    Guzman J, Carrettin S, Fierro-Gonzalez JC, Hao YL, Gates BC, Corma A (2005) CO oxidation catalyzed by supported gold: cooperation between gold and nanocrystalline rare-earth supports forms reactive surface superoxide and peroxide species. Angew Chem Int Ed 44:4778–4781CrossRefGoogle Scholar
  69. 69.
    Wang Y, Van de Vyver S, Sharma KK, Leshkov YR (2014) Insights into the stability of gold nanoparticles supported on metal oxides for the base-free oxidation of glucose to gluconic acid. Green Chem 16:719–726CrossRefGoogle Scholar
  70. 70.
    Liu T, Li B, Hao Y, Han F, Zhang L, Hu L (2015) A general method to diverse silver/mesoporous–metal–oxidenanocomposites with plasmon-enhanced photocatalytic activity. Appl Catal B 165:378–388CrossRefGoogle Scholar
  71. 71.
    Liu K, Bai Y, Zhang L, Yang Z, Fan Q, Zheng H, Yin Y, Gao C (2016) Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis 16:3675–3681Google Scholar
  72. 72.
    Dutta Choudhury S, Badugu R, Ray K, Lakowicz JR (2012) Silver–gold nanocomposite substrates for metal-enhanced fluorescence: ensemble and single-molecule spectroscopic studies. J Phys Chem C 116:5042–5048CrossRefGoogle Scholar
  73. 73.
    Li HJ, Zhang AQ, Hu Y, Sui L, Qian DJ, Chen M (2012) Large-scale synthesis and self-organization of silver nanoparticles with tween 80 as a reductant and stabilizer. Nanoscale Res Lett 7:612CrossRefGoogle Scholar
  74. 74.
    Vimala K, Yallapu MM, Varaprasad K, Reddy NN, Ravindra S, Naidu NS, Raju KM (2011) Fabrication of curcumin encapsulated chitosan-PVA silver nanocomposite films for improved antimicrobial activity. J Biomater Nanobiotechnol 2:55–64CrossRefGoogle Scholar
  75. 75.
    Porel S, Ramakrishna D, Hariprasad E, Gupta D, Radhakrishnan P (2011) Polymer thin film with in situ synthesized silver nanoparticles as a potent reusable bactericide. Curr Sci 101:927–934Google Scholar
  76. 76.
    Wankhade Y, Kondawar S, Thakare S, More P (2013) Synthesis and characterization of silver nanoparticles embedded in polyaniline nanocomposite. Adv Mater 4:89–93Google Scholar
  77. 77.
    Guo Q, Ghadiri R, Weigel T, Aumann A, Gurevich E, Esen C, Medenbach O, Cheng W, Chichkov B, Ostendorf A (2014) Comparison of in situ and ex situ methods for synthesis of two-photon polymerization polymer nanocomposites. Polymers 6:2037–2050CrossRefGoogle Scholar
  78. 78.
    Lim MH, Ast DG (2001) Free-standing thin films containing hexagonally organized silver nanocrystals in a polymer matrix. Adv Mater 13:718–721CrossRefGoogle Scholar
  79. 79.
    Mandi U, Roy AS, Banerjee B, Islam SM (2014) A novel silver nanoparticle embedded mesoporous polyaniline (mPANI/Ag) nanocomposite as a recyclable catalyst in the acylation of amines and alcohols under solvent free conditions. RSC Adv. 4:42670–42681CrossRefGoogle Scholar
  80. 80.
    Mandi U, Roy AS, Kundu SK, Roy S, Bhaumik A, Islam SM (2016) Mesoporouspolyacrylic acid supported silver nanoparticles as an efficient catalyst for reductive coupling of nitrobenzenes and alcohols using glycerol as hydrogen source. J Colloid Interface Sci 472:202–209CrossRefGoogle Scholar
  81. 81.
    Panáček A, Kvítek L, Prucek R, Kolář M, Večeřová R, Pizúrová N, Sharma VK, Nevěčná TJ, Zbořil R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110(33):16248–16253CrossRefGoogle Scholar
  82. 82.
    Kvitek L, Panáček A, Soukupova J, Kolář M, Večeřová R, Prucek R, Holecova M, Zbořil R (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112(15):5825–5834CrossRefGoogle Scholar
  83. 83.
    Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182CrossRefGoogle Scholar
  84. 84.
    Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42(18):4591–4602CrossRefGoogle Scholar
  85. 85.
    Liu J, Li X, Zuo S, Yu Y (2007) Preparation and photocatalytic activity of silver and TiO2 nanoparticles/montmorillonite composites. Appl Clay Sci 37(3):275–280CrossRefGoogle Scholar
  86. 86.
    Shah MSAS, Nag M, Kalagara T, Singh S, Manorama SV (2008) Silver on PEG-PU-TiO2 polymer nanocomposite films: an excellent system for antibacterial applications. Chem Mater 20(7):2455–2460CrossRefGoogle Scholar
  87. 87.
    Kong H, Jang J (2008) Antibacterial properties of novel poly (methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir 24(5):2051–2056CrossRefGoogle Scholar
  88. 88.
    Lee EM, Lee HW, Park JH, Han YA, Ji BC, Oh W, Deng Y, Yeum JH (2008) Multihollow structured poly (methyl methacrylate)/silver nanocomposite microspheres prepared by suspension polymerization in the presence of dual dispersion agents. Colloid Polymer Sci 286(12):1379–1385CrossRefGoogle Scholar
  89. 89.
    Nadagouda MN, Varma RS (2007) Synthesis of thermally stable carboxymethyl cellulose/metal biodegradable nanocomposites for potential biological applications. Biomacromol 8(9):2762–2767CrossRefGoogle Scholar
  90. 90.
    Kawahara K, Tsuruda K, Morishita M, Uchida M (2000) Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions. Dent Mater 16(6):452–455CrossRefGoogle Scholar
  91. 91.
    Casemiro LA, Martins CHG, Pires-de-Souza FDC, Panzeri H (2008) Antimicrobial and mechanical properties of acrylic resins with incorporated silver–zinc zeolite–part I. Gerodontology 25(3):187–194CrossRefGoogle Scholar
  92. 92.
    Matsuura T, Abe Y, Sato Y, Okamoto K, Ueshige M, Akagawa Y (1997) Prolonged antimicrobial effect of tissue conditioners containing silver-zeolite. J Dent 25(5):373–377CrossRefGoogle Scholar
  93. 93.
    Morishita M, Miyagi M, Yamasaki Y, Tsuruda K, Kawahara K, Iwamoto Y (1998) Pilot study on the effect of a mouthrinse containing silver zeolite on plaque formation. J Clin Dent 9:94–96Google Scholar
  94. 94.
    Aroca RF, Goulet PJ, dos Santos DS, Alvarez-Puebla RA, Oliveira ON (2005) Silver nanowire layer-by-layer films as substrates for surface-enhanced Raman scattering. Anal Chem 77(2):378–382CrossRefGoogle Scholar
  95. 95.
    Lesniak W, Bielinska AU, Sun K, Janczak KW, Shi X, Baker JR, Balogh LP (2005) Silver/dendrimer nanocomposites as biomarkers: fabrication, characterization, in vitro toxicity, and intracellular detection. Nano Lett 5(11):2123–2130CrossRefGoogle Scholar
  96. 96.
    Oh Y, Suh D, Kim Y, Lee E, Mok JS, Choi J, Baik S (2008) Silver-plated carbon nanotubes for silver/conducting polymer composites. Nanotechnology 19(49):495602CrossRefGoogle Scholar
  97. 97.
    Sur I, Cam D, Kahraman M, Baysal A, Culha M (2010) Interaction of multi-functional silver nanoparticles with living cells. Nanotechnology 21(17):175104CrossRefGoogle Scholar
  98. 98.
    Vilela D, González MC, Escarpa A (2012) Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: chemical creativity behind the assay. A review. Anal Chim Acta 751:24–43CrossRefGoogle Scholar
  99. 99.
    Shin SH, Ye MK, Kim HS, Kang HS (2007) The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. Int Immunopharmacol 7(13):1813–1818CrossRefGoogle Scholar
  100. 100.
    Tian J, Wong KK, Ho CM, Lok CN, Yu WY, Che CM, Chiu JF, Tam PK (2007) Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem 2(1):129–136CrossRefGoogle Scholar
  101. 101.
    Wu J, Balasubramanian S, Kagan D, Manesh KM, Campuzano S, Wang J (2010) Motion-based DNA detection using catalytic nanomotors. Nat Comm 1:36CrossRefGoogle Scholar
  102. 102.
    Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176(1):1–12CrossRefGoogle Scholar
  103. 103.
    Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408(5):999–1006CrossRefGoogle Scholar
  104. 104.
    Gupta A, Silver S (1998) Molecular genetics: silver as a biocide: will resistance become a problem? Nat Biotechnol 16(10):888CrossRefGoogle Scholar
  105. 105.
    Ghosh S, Azhahianambi P, de la Fuente J (2006) Control of ticks of ruminants, with special emphasis on livestock farming systems in India: present and future possibilities for integrated control—a review. Exp Appl Acarol 40(1):49–66CrossRefGoogle Scholar
  106. 106.
    Bergeson LL (2010) Nanosilver: US EPA’s pesticide office considers how best to proceed. Environ Qual Manage 19(3):79–85CrossRefGoogle Scholar
  107. 107.
    Yan J, Huang K, Wang Y, Liu S (2005) Study on anti-pollution nano-preparation of dimethomorph and its performance. Chin Sci Bull 50(2):108–112CrossRefGoogle Scholar
  108. 108.
    Quintavalla S, Vicini L (2002) Antimicrobial food packaging in meat industry. Meat Sci 62(3):373–380CrossRefGoogle Scholar
  109. 109.
    Wong DW, Camirand WM, Pavlath AE (1994) Development of edible coatings for minimally processed fruits and vegetables. Edible Coat Films Improve Food Qual 65–88Google Scholar
  110. 110.
    Han JH (2005) New technologies in food packaging: overview. Innov Food Packag 3–11Google Scholar
  111. 111.
    Mei Y, Zhao Y (2003) Barrier and mechanical properties of milk protein-based edible films containing nutraceuticals. J Agric Food Chem 51(7):1914–1918CrossRefGoogle Scholar
  112. 112.
    Labuza TP, Breene WM (1989) Applications of “active packaging” for improvement of shelf-life and nutritional quality of fresh and extended shelf-life foods. J Food Process Preserv 13(1):1–69CrossRefGoogle Scholar
  113. 113.
    Cha DS, Chinnan MS (2004) Biopolymer-based antimicrobial packaging: a review. Crit Rev Food Sci Nutr 44(4):223–237CrossRefGoogle Scholar
  114. 114.
    Cagri A, Ustunol Z, Ryser ET (2004) Antimicrobial edible films and coatings. J Food Prot 67(4):833–848CrossRefGoogle Scholar
  115. 115.
    Rhim JW, Hong SI, Park HM, Ng PK (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54(16):5814–5822CrossRefGoogle Scholar
  116. 116.
    Hu Z, Chan WL, Szeto YS (2008) Nanocomposite of chitosan and silver oxide and its antibacterial property. J Appl Polym Sci 108(1):52–56CrossRefGoogle Scholar
  117. 117.
    Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innov Food Sci Emerg Technol 3(2):113–126CrossRefGoogle Scholar
  118. 118.
    Li H, Li F, Wang L, Sheng J, Xin Z, Zhao L, Xiao H, Zheng Y, Hu Q (2009) Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujuba Mill. var. inermis (Bunge) Rehd). Food Chem 114(2):547–552CrossRefGoogle Scholar
  119. 119.
    Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83CrossRefGoogle Scholar
  120. 120.
    Simpson K (2003) Using silver to fight microbial attack. Plast Addit Compd 5(5):32–35CrossRefGoogle Scholar
  121. 121.
    Praus P, Turicová M, Machovič V, Študentová S, Klementová M (2010) Characterization of silver nanoparticles deposited on montmorillonite. Appl Clay Sci 49(3):341–345CrossRefGoogle Scholar
  122. 122.
    Coleman NJ, Bishop AH, Booth SE, Nicholson JW (2009) Ag+ and Zn2+ exchange kinetics and antimicrobial properties of 11Å tobermorites. J Eur Ceram Soc 29(6):1109–1117Google Scholar
  123. 123.
    Cowan MM, Abshire KZ, Houk SL, Evans SM (2003) Antimicrobial efficacy of a silver-zeolite matrix coating on stainless steel. J Ind Microbiol Biotechnol 30(2):102–106CrossRefGoogle Scholar
  124. 124.
    Galeano B, Korff E, Nicholson WL (2003) Inactivation of vegetative cells, but not spores, of Bacillus anthracis, B. cereus, and B. subtilis on stainless steel surfaces coated with an antimicrobial silver-and zinc-containing zeolite formulation. Appl Environ Microbiol 69(7):4329–4331CrossRefGoogle Scholar
  125. 125.
    Matsumura Y, Yoshikata K, Kunisaki SI, Tsuchido T (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69(7):4278–4281CrossRefGoogle Scholar
  126. 126.
    Nakane T, Gomyo H, Sasaki I, Kimoto Y, Hanzawa N, Teshima Y, Namba T (2006) New antiaxillary odour deodorant made with antimicrobial Ag-zeolite (silver-exchanged zeolite). Int J Cosmet Sci 28(4):299–309CrossRefGoogle Scholar
  127. 127.
    Akdeniz Y, Ülkü S (2008) Thermal stability of Ag-exchanged clinoptilolite rich mineral. J Therm Anal Calorim 94(3):703–710CrossRefGoogle Scholar
  128. 128.
    Gulbranson SH, Hud JA, Hansen RC (2000) Argyria following the use of dietary supplements containing colloidal silver protein. Cutis 66(5):373–374Google Scholar
  129. 129.
    Romano P, Suzzi G (1993) Sulfur dioxide and wine microorganisms 373–393Google Scholar
  130. 130.
    Bakker J, Bridle P, Bellworthy SJ, Garcia-Viguera C, Reader HP, Watkins SJ (1998) Effect of sulphur dioxide and must extraction on colour, phenolic composition and sensory quality of red table wine. J Sci Food Agric 78(3):297–307CrossRefGoogle Scholar
  131. 131.
    Blaise A, Bertrand A (1998) Altérations organoleptiques des vins. Oenologie. Fondements Scientifique et Technologiques 1182–1216Google Scholar
  132. 132.
    Stratford M, Rose AH (1985) Hydrogen sulphhide production from sulphite by Saccharomyces cerevisiae. Microbiology 131(6):1417–1424CrossRefGoogle Scholar
  133. 133.
    Izquierdo-Cañas PM, García-Romero E, Huertas-Nebreda B, Gómez-Alonso S (2012) Colloidal silver complex as an alternative to sulphur dioxide in winemaking. Food Control 23(1):73–81CrossRefGoogle Scholar
  134. 134.
    Umadevi M, Christy AJ (2013) Optical, structural and morphological properties of silver nanoparticles and its influence on the photocatalytic activity of TiO2. Spectrochim Acta Part A Mol Biomol Spectrosc 111:80–85CrossRefGoogle Scholar
  135. 135.
    Chen D, Qiao X, Qiu X, Chen J (2009) Synthesis and electrical properties of uniform silver nanoparticles for electronic applications. J Mater Sci 44(4):1076–1081CrossRefGoogle Scholar
  136. 136.
    Jiang H, Moon KS, Li Y, Wong CP (2006) Surface functionalized silver nanoparticles for ultrahigh conductive polymer composites. Chem Mater 18:2969–2973CrossRefGoogle Scholar
  137. 137.
    Alshehri AH, Jakubowska M, Młożniak A, Horaczek M, Rudka D, Free C, Carey JD (2012) Enhanced electrical conductivity of silver nanoparticles for high frequency electronic applications. ACS Appl Mater Interfaces 4(12):7007–7010CrossRefGoogle Scholar
  138. 138.
    Nam S, Cho HW, Lim S, Kim D, Kim H, Sung BJ (2012) Enhancement of electrical and thermomechanical properties of silver nanowire composites by the introduction of nonconductive nanoparticles: experiment and simulation. ACS Nano 7(1):851–856CrossRefGoogle Scholar
  139. 139.
    Yu YH, Ma CCM, Teng CC, Huang YL, Lee SH, Wang I, Wei MH (2012) Electrical, morphological, and electromagnetic interference shielding properties of silver nanowires and nanoparticles conductive composites. Mater Chem Phys 136(2):334–340CrossRefGoogle Scholar
  140. 140.
    Lee J, Lee P, Lee HB, Hong S, Lee I, Yeo J, Lee SS, Kim TS, Lee D, Ko SH (2013) Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touch-panel application. Adv Func Mater 23(34):4171–4176CrossRefGoogle Scholar
  141. 141.
    Chapman R, Mulvaney P (2001) Electro-optical shifts in silver nanoparticle films. Chem Phys Lett 349(5):358–362CrossRefGoogle Scholar
  142. 142.
    Wei H, Eilers H (2008) Electrical conductivity of thin-film composites containing silver nanoparticles embedded in a dielectric fluoropolymer matrix. Thin Solid Films 517(2):575–581CrossRefGoogle Scholar
  143. 143.
    Guo H, Tao S (2007) Silver nanoparticles doped silica nanocomposites coated on an optical fiber for ammonia sensing. Sens Actuators B Chem 123(1):578–582CrossRefGoogle Scholar
  144. 144.
    Marques-Hueso J, Abargues R, Canet-Ferrer J, Valdes JL, Martinez-Pastor J (2010) Resist-based silver nanocomposites synthesized by lithographic methods. Microelectron Eng 87(5):1147–1149CrossRefGoogle Scholar
  145. 145.
    Ananth AN, Umapathy S, Sophia J, Mathavan T, Mangalaraj D (2011) On the optical and thermal properties of in situ/ex situ reduced Ag NP’s/PVA composites and its role as a simple SPR-based protein sensor. Appl Nanosci 1(2):87–96CrossRefGoogle Scholar
  146. 146.
    Ghosh S, Das AP (2015) Modified titanium oxide (TiO2) nanocomposites and its array of applications: a review. Toxicol Environ Chem 97(5):491–514CrossRefGoogle Scholar
  147. 147.
    Hutter E, Fendler JH, Roy D (2001) Surface plasmon resonance studies of gold and silver nanoparticles linked to gold and silver substrates by 2-aminoethanethiol and 1, 6-hexanedithiol. J Phys Chem B 105(45):11159–11168CrossRefGoogle Scholar
  148. 148.
    Li X, Choy WCH, Lu H, Sha WE, Ho AHP (2013) Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles. Adv Func Mater 23(21):2728–2735CrossRefGoogle Scholar
  149. 149.
    Endo T, Yanagida Y, Hatsuzawa T (2008) Quantitative determination of hydrogen peroxide using polymer coated Ag nanoparticles. Measurement 41(9):1045–1053CrossRefGoogle Scholar
  150. 150.
    Pinto RJ, Marques PA, Neto CP, Trindade T, Daina S, Sadocco P (2009) Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomater 5(6):2279–2289CrossRefGoogle Scholar
  151. 151.
    Vimala K, Mohan YM, Sivudu KS, Varaprasad K, Ravindra S, Reddy NN, Padma Y, Sreedhar B, MohanaRaju K (2010) Fabrication of porous chitosan films impregnated with silver nanoparticles: a facile approach for superior antibacterial application. Colloids Surf B 76(1):248–258CrossRefGoogle Scholar
  152. 152.
    Egger S, Lehmann RP, Height MJ, Loessner MJ, Schuppler M (2009) Antimicrobial properties of a novel silver-silica nanocomposite material. Appl Environ Microbiol 75(9):2973–2976CrossRefGoogle Scholar
  153. 153.
    Hebeish A, Hashem M, El-Hady MA, Sharaf S (2013) Development of CMC hydrogels loaded with silver nano-particles for medical applications. Carbohyd Polym 92(1):407–413CrossRefGoogle Scholar
  154. 154.
    Mpenyana-Monyatsi L, Mthombeni NH, Onyango MS, Momba MN (2012) Cost-effective filter materials coated with silver nanoparticles for the removal of pathogenic bacteria in groundwater. Int J Environ Res Pub Health 9(1):244–271CrossRefGoogle Scholar
  155. 155.
    Kim ES, Hwang G, El-Din MG, Liu Y (2012) Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. J Membr Sci 394:37–48CrossRefGoogle Scholar
  156. 156.
    Kim DG, Kang H, Han S, Lee JC (2012) The increase of antifouling properties of ultrafiltration membrane coated by star-shaped polymers. J Mater Chem 22(17):8654–8661CrossRefGoogle Scholar
  157. 157.
    Taurozzi JS, Arul H, Bosak VZ, Burban AF, Voice TC, Bruening ML, Tarabara VV (2008) Effect of filler incorporation route on the properties of polysulfone–silver nanocomposite membranes of different porosities. J Membr Sci 325(1):58–68CrossRefGoogle Scholar
  158. 158.
    Kim J, Van der Bruggen B (2010) The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ Pollut 158(7):2335–2349CrossRefGoogle Scholar
  159. 159.
    DiGiano FA (2008) In pursuit of innovative membrane technology. In: IWA Membrane Research Conference. University of MassachusettsGoogle Scholar
  160. 160.
    Lv Y, Liu H, Wang Z, Liu S, Hao L, Sang Y, Liu D, Wang J, Boughton RI (2009) Silver nanoparticle-decorated porous ceramic composite for water treatment. J Membr Sci 331(1):50–56CrossRefGoogle Scholar
  161. 161.
    Banerjee M, Mallick S, Paul A, Chattopadhyay A, Ghosh SS (2010) Heightened reactive oxygen species generation in the antimicrobial activity of a three component iodinated chitosan–silver nanoparticle composite. Langmuir 26(8):5901–5908CrossRefGoogle Scholar
  162. 162.
    Gong P, Li H, He X, Wang K, Hu J, Tan W, Zhang S, Yang X (2007) Preparation and antibacterial activity of Fe3O4@ Ag nanoparticles. Nanotechnology 18(28):285604CrossRefGoogle Scholar
  163. 163.
    Jain P, Pradeep T (2005) Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng 90(1):59–63CrossRefGoogle Scholar
  164. 164.
    Czajka R (2005) Development of medical textile market. Fibres Text Eastern Eur 13(1):13–15Google Scholar
  165. 165.
    Perelshtein I, Applerot G, Perkas N, Guibert G, Mikhailov S, Gedanken A (2008) Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 19(24):245705CrossRefGoogle Scholar
  166. 166.
    Dallas P, Sharma VK, Zboril R (2011) Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv Coll Interface Sci 166(1):119–135CrossRefGoogle Scholar
  167. 167.
    Kumar A, Vemula PK, Ajayan PM, John G (2008) Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater 7(3):236–241CrossRefGoogle Scholar
  168. 168.
    Lohani A, Verma A, Joshi H, Yadav N, Karki N (2014) Nanotechnology-based cosmeceuticals. ISRN DermatolGoogle Scholar
  169. 169.
    Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2(1):32CrossRefGoogle Scholar
  170. 170.
    Gleiche M, Hoffschulz H, Lenhert S (2006) Nanotechnology in consumer products. Nanoforum Rep 1–30Google Scholar
  171. 171.
    Gajbhiye S, Sakharwade S (2016) Silver nanoparticles in cosmetics. J Cosmet Dermatol Sci Appl 6(1):48Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of KalyaniKalyani, NadiaIndia
  2. 2.Department of Molecular Biology and BiotechnologyUniversity of KalyaniKalyani, NadiaIndia

Personalised recommendations