Nanocellulose in the Paper Making

  • Elaine Cristina Lengowski
  • Eraldo Antonio Bonfatti Júnior
  • Marina Mieko Nishidate Kumode
  • Mayara Elita Carneiro
  • Kestur Gundappa SatyanarayanaEmail author


In recent times, nanotechnology, which has been one of the main novelties to be developed in the 21st century, has been applied to many sectors, particularly to various industrial sectors including forest-based industry. An output of this is the development of nanomaterials of which nanocelluloses have been studied as high technology biopolymers for application in various materials through the development of films and as reinforcement in papers. With this background, the main objective of this Chapter is to present the use of nanocellulose in the paper making. Accordingly, the Chapter presents characteristics of the most used wood in the world for pulp and paper production, main methods of obtaining cellulose in nature, process of bleaching of pulp, paper making, processes to obtain different types of nanocellulose (microfibrillar nanofiber and cellulose nanocrystals), applications of nanocellulose in the paper making through coating and films as well as by nanocellulose-reinforced pulp and the resulting effects of the use of nanocellulose in paper production. These include increased tensile and burst strengths, weight loss, improved barrier properties for oils, oxygen and moisture, better printing surface, etc. In the end, marketing aspects, possible future opportunities and finally concluding remarks are given. These briefly mention the use of nanocelluloses in papermaking presenting interesting possibilities, which offer improvements in cost-benefit, energy efficiency and biocompatibility, in addition to generating new products with uses are not available today.


Forest products Wood Pulp Bleaching Nanotechnology 



At the outset, the authors express their sincere thanks to the Editors of the book (Inamuddin, Sabu Thomas, Raguvendra Mishra and Abdullah M. Asiri), particularly Prof. Inamuddin for inviting us to contribute this Chapter. The authors place on record and appreciate the kind permission given by some of the authors (who have given permission to use their figures), M/s. Elsevier Inc Publishers, Springer, Sociedade Brasileira de Química—SBQ, Brazil, or—“Copyright American Society of Plant Biologists.” InTech Open Publishers, IOP Publishing and the Vietnam Academy of Science and Technology (VAST) to reproduce some of the figures from their publications free of charges. One of the authors (KGS) would like to thank the PPISR, Bangalore-India with whom he is associated with presently for their encouragement and interest in this collaboration.


  1. 1.
    Abdul Khalil HPS, Davoudpour Y, Nazrul Islam MD et al (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665CrossRefGoogle Scholar
  2. 2.
    Abdul Khalil HPS, Tye YY, Leh CP, Saurabh CK et al (2018) Cellulose reinforced biodegradable polymer composite film for packaging applications. In: Jawaid M, Swain S (eds) Bionanocomposites for packaging applications. Springer, Cham, pp 49–64CrossRefGoogle Scholar
  3. 3.
    Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromol 8:3276–3278CrossRefGoogle Scholar
  4. 4.
    Ahola S, Turon X, Österberg M et al (2008) Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure. Langmuir 24(20):11592–11599CrossRefGoogle Scholar
  5. 5.
    Ahola S, Salmi J, Johansson L-S et al (2008b). Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Biomacromol 9(4):1273–1282Google Scholar
  6. 6.
    Akil HM, Omar MF, Mazuki AAM et al (2011) Kenaf fiber reinforced composites: a review. Mater Des 32:4107–4121CrossRefGoogle Scholar
  7. 7.
    Almeida FS (2003) Influence of alkaline load on the Lo-solids® pulping process for eucalyptus wood. Dissertation, Unisity of São PauloGoogle Scholar
  8. 8.
    Anderson SR, Esposito D, Gillette W et al (2014) Enzymatic preparation of nanocrystalline and microcrystalline cellulose. Tappi J 13(5):35–42Google Scholar
  9. 9.
    Andrade M (2011) The fiber line of the future for eucalyptus kraft pulp. In: Paper presented at the 5 th international colloquium on eucalyptus pulp, Federal Uniuversity of Viçosa, Porto Seguro, 8–11 may 2011Google Scholar
  10. 10.
    Angles MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromol 33(22):8344–8353Google Scholar
  11. 11.
    Ankerfors M, Duker E, Lindstrom T (2013) Topo-chemical modification of fibres by grafting of carboxymethyl cellulose in pilot scale. Nord Pulp Pap Res J 28(1):6–14CrossRefGoogle Scholar
  12. 12.
    Ankerfors M, Lindström T, Henriksson G (2013b) Method for the manufacture of microfibrillated cellulose. US patent 8,546,558, 8 Feb 2006,Google Scholar
  13. 13.
    Aulin C, Gallstedt M, Lindstrom T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574CrossRefGoogle Scholar
  14. 14.
    Azeredo HMC (2012) Fundamentals of food stability. EMBRAPA, BrasíliaGoogle Scholar
  15. 15.
    Barbosa LCA, Maltha CRA, Silva VL et al (2008) Determination of the siringyl/guaiacyl ratio in eucalyptus wood by pyrolysis-gas chromatography/ mass spectrometry (PY–GC/MS) (PI-CG/EM). Quím Nova 31(8):2035–2041CrossRefGoogle Scholar
  16. 16.
    Bardet R, Reverdy C, Belgacem N et al (2015) Substitution of nanoclay in high gas barrier films of cellulose nanofibrils with cellulose nanocrystals and thermal treatment. Cellulose 22(2):1227–1241CrossRefGoogle Scholar
  17. 17.
    Barhoum A, Samyn P, Öhlund T et al (2017) Review of recent research on flexible multifunctional nanopapers. Nanoscale 9:15181–15205CrossRefGoogle Scholar
  18. 18.
    Bastioli C (2005) Handbook of biodegradable polymers. Rapra Technology Limited, ShawburyGoogle Scholar
  19. 19.
    Batista JA, Tanada-Palmu PS, Grosso CRF (2005) The effect of addition of fatty acids on pectin films. Ciênc Tecnol Aliment 25:781–788CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Beuvalet M (2016) Application of cellulose nanomaterials in thermoplastic composites. Univesity of Waterloo, ThesisGoogle Scholar
  22. 22.
    Bonfatti EA Jr (2013) Oxygen delignification for kraft pulp with high kappa number. Dissertation, Unisity of São PauloGoogle Scholar
  23. 23.
    Brinchi L, Cotana F, Fourtunati E et al (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169CrossRefGoogle Scholar
  24. 24.
    Campano C, Merayo N, Balea A et al (2017) Mechanical and chemical dispersion of nanocelluloses to improve their reinforcing effect on recycled paper. Cellulose 25(1):269–280CrossRefGoogle Scholar
  25. 25.
  26. 26.
    Chaker A, Mutjé P, Vilar MR et al (2014) Agriculture crop residues as a source for the production of nanofibrillated cellulose with low energy demand. Cellulose 21(6):4247–4259CrossRefGoogle Scholar
  27. 27.
    Chen P, Yu H, Liu Y et al (2013) Concentration effects on the isolation and dynamic rheological behavior of cellulose nanofibers via ultrasonic processing. Cellulose 20(1):149–157CrossRefGoogle Scholar
  28. 28.
    Cheng Q, Wang S, Rials TG (2009) Poly(vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication. Compos Part A Appl Sci Manuf 40:218–224CrossRefGoogle Scholar
  29. 29.
    Cheng G, Zhou M, Wei Y-J et al (2017) Comparison of mechanical reinforcement effects of cellulose nanocrystal; cellulose nanofiber; and microfibrillated cellulose in starch composites. Polym Compos
  30. 30.
    Cherian BM, Leão AL, Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81:720–725CrossRefGoogle Scholar
  31. 31.
    Colodette JL, Santos VLS (2015) General principles of bleaching. In: Colodette JL, Gomes FJB (eds) Cellulose pulp bleaching. Federal University of Viçosa, Viçosa, pp 173–202Google Scholar
  32. 32.
    Coutts RSP (2005) A review of Australian research into natural fibre cements composites. Cem Concr Compos 27(5):518–526CrossRefGoogle Scholar
  33. 33.
    Cowie J, Bilek EM, Wegner T et al (2014) Market projections of cellulose nanomaterial-enabled products—part 2: volume estimates. Tappi J 13(6):57–69Google Scholar
  34. 34.
    Damásio RAP (2015) Characterization and nanoscale applications of nanofibrillated cellulose (NFC) and cellulose nanocrystals (CNC). Dissertation, Federal University of ViçosaGoogle Scholar
  35. 35.
    de Souza e Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Comm 25:771–787Google Scholar
  36. 36.
    Deep B, Abraham E, Cherian BM et al (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102:1988–1997CrossRefGoogle Scholar
  37. 37.
    Dufresne A (2008) Processing of polymer nanocomposites reinforced with polysaccharide nanocrystals. Macromolecules 15(8):4111–4128Google Scholar
  38. 38.
    Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7(2):303–315CrossRefGoogle Scholar
  39. 39.
    Eriksen Ø, Syverud K, Gregersen Ø (2008) The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nord Pulp Pap Res J 23:299–304CrossRefGoogle Scholar
  40. 40.
    Fakhouri FM, Fontes LCB, Gonçalves PVM et al (2007) Films and edible coatings based on native starches and gelatin in the conservation and sensory acceptance of Crimson grapes. J Food Sci Technol 27:369–375CrossRefGoogle Scholar
  41. 41.
    Fang Z, Zhu H, Yuan Y et al (2014) Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett 14(2):765–773CrossRefGoogle Scholar
  42. 42.
    Ferrer A, Filpponen I, Rodríguez A et al (2012) Valorization of residual empty palm fruit bunch fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper. Bioresour Technol 125:249–255CrossRefGoogle Scholar
  43. 43.
    Frey MW (2008) Electrospinning cellulose and cellulose derivatives. Polym Rev 48(2):378–391CrossRefGoogle Scholar
  44. 44.
    Frone AN, Panaitescu DM, Donescu D (2011) Some aspects concerning the isolation of cellulose micro-and nano-fibers. Sci Bull B Chem Mater Sci UPB 73(2):133–152Google Scholar
  45. 45.
    Frone AN, Panaitescu DM, Donescu D et al (2011) Preparation and characterization of PVA composites with cellulose nanofibers obtained by ultrasonication. BioResources 6(1):487–512Google Scholar
  46. 46.
    Fujisawa S, Okita Y, Fukuzumi H et al (2011) Preparation and characterization of TEMPO-oxidized cellulose nanofibrils films with free carboxyl groups. Carbohydr Polym 84(1):579–583CrossRefGoogle Scholar
  47. 47.
    Fukuzumi H, Saito T, Iwata T et al (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromol 10(1):162–165CrossRefGoogle Scholar
  48. 48.
    Ghosh AK (2011) Fundamentals of paper drying-theory and application from industrial perspective. In: Ahasan A (ed) Evaporation, codensation and heat transfer. InTech, London, pp 535–541Google Scholar
  49. 49.
    Gomide JL, Gomes FJB (2015) Production and composition of unbleached pulps. In: Colodette JL, Gomes FJB (ed) Cellulose pulp bleaching. Federal University of Viçosa, Viçosa, Brazil. pp 59–115Google Scholar
  50. 50.
    Gonzalez I, Boufi S, Pèlach M et al (2012) Nanofibrillated cellulose as paper additive in eucalyptus pulps. BioResources 7(4):5167–5180CrossRefGoogle Scholar
  51. 51.
    González I, Vilaseca F, Alcalá M et al (2013) Effect of the combination of biobeating and NFC on the physico-mechanical properties of paper. Cellulose 20(3):1425–1435CrossRefGoogle Scholar
  52. 52.
    Gullichsen J, Paulapuro H (2000) Papermaking science and technology: papermaking chemistry. Fapet Oy, HelsinkiGoogle Scholar
  53. 53.
    Gunaratne SA (2001) Paper, printing and the printing press: a horizontally integrative machohistory analysis. Gazette 63(6):459–479CrossRefGoogle Scholar
  54. 54.
    Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500CrossRefGoogle Scholar
  55. 55.
    Hart PW, Rudie AW (2012) The bleaching of pulp, 5th edn. TAPPI Press, AtlantaGoogle Scholar
  56. 56.
    Hassan ML, Mathew AP, Hassan EA et al (2012) Nanofibers from bagasse and rice straw: process optimization and properties. Wood Sci Technol 46(1):193–205CrossRefGoogle Scholar
  57. 57.
    He W, Jiang X, Sun F et al (2014) Extraction and characterization of cellulose nanofibers from Phyllostachys nidularia munro via a combination of acid treatment and ultrasonication. BioResources 9(4):6876–87CrossRefGoogle Scholar
  58. 58.
    Henriksson M, Berglund LA, Isaksson P et al (2008) Cellulose nanopaper structures of high toughness. Biomacromol 9:1579–1585CrossRefGoogle Scholar
  59. 59.
    Hii C, Gregersen ØW, Chinga-Carrasco G et al (2012) The effect of MFC on the pressability and paper properties of TMP and GCC based sheets. Nord Pulp Pap Res J 27(2):388–396CrossRefGoogle Scholar
  60. 60.
    Hinche M, Bassa AGMC, Rottmann W et al (2011) Biotech enhanced levels of syringil lignin improves Eucalyptus pulping efficiency. In: Paper presented at the 5th international colloquium on eucalyptus pulp, Federal Uniuversity of Viçosa, Porto Seguro, Brazil. 8–11 May 2011Google Scholar
  61. 61.
    Horáček P, Fajstavr M, Stojanović M (2017) The variability of wood density and compression strength of Norway spruce (Picea abies/L./Karst.) within the stem. Beskydy 10(1–2):17–26Google Scholar
  62. 62.
    Hu Y, Topolkaraev V, Hitner A et al (2000) Measurement of water vapor transmission rate in highly permeable films. J Appl Polym Sci 81(3):1624–1633Google Scholar
  63. 63.
    Hu J, Zhang Q, Lee D-J (2018) Kraft lignin biorefinery: a proposal. Bioresour Technol 247:1181–1183CrossRefGoogle Scholar
  64. 64.
    Hullmann A (2006). The economic development of nanotechnology—an indicators based analysis. European Commission, DG Research, Unit “Nano S&T—Convergent Science and Technologies”. Staff working paper. Acessed 22 Feb 2018
  65. 65.
    Hult EL, Iotti M, Lenes M (2010) Efficient approach to high barrier packaging using microfibrillar cellulose and shellac. Cellulose 17(3):575–586CrossRefGoogle Scholar
  66. 66.
    Höglund H (2009) Mchanical pulping. In: Ek M, Gellerstedt G, Henriksson G (eds) Pulp and paper chemistry and technology, vol 2. Pulping chemistry and technology. Walter de Gruyter GmbH & Co., Berlin, pp 57–89Google Scholar
  67. 67.
    Ianuzzi A (ed) (2012) Greener products: the making and marketing of sustainable brands. CRC Press, Boca RatonGoogle Scholar
  68. 68.
    International Organization for Standardization (2017) ISO/TC 6: paper, board and pulpsGoogle Scholar
  69. 69.
    Ireana Yusra AF, Juahir H, Firdaus NWNA et al (2018) Controlling of Green nanocellulose fiber properties produced by chemo-mechanical treatment process via SEM, TEM, AFM and image analyzer characterization. J Fundam Appl Sci 10(1s):1–17Google Scholar
  70. 70.
    Isogai A (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci 59(6):449–459CrossRefGoogle Scholar
  71. 71.
    Janardhnan S, Sain M (2006) Isolation of cellulose microfibrils—an enzymathic approach. BioResources 1:176–188Google Scholar
  72. 72.
    Jardim CM, Colodette JL(2015) Pulp chromophoric groups. In: Colodette JL, Gomes FJB (eds) Cellulose pulp bleaching. Federal University of Viçosa, Viçosa, Brazil, pp 203–215Google Scholar
  73. 73.
    Jiang F, Hsieh YL (2014) Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing-thawing. J Mater Chem A 2(2):350–359CrossRefGoogle Scholar
  74. 74.
    John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364CrossRefGoogle Scholar
  75. 75.
    Julkapli NM, Bagheri S (2016) Developments in nano-additives for paper industry. J Wood Sci 62:117–130CrossRefGoogle Scholar
  76. 76.
    Kajanto I, Kosonen M (2012) The potential use of micro-and nanofibrillated cellulose as a reinforcing element in paper. J-For 2(6):42–48Google Scholar
  77. 77.
    Kalia S, Boufi S, Celli A et al (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292(1):5–31CrossRefGoogle Scholar
  78. 78.
    Keerati-u-rai M, Corredig M (2009) Effect of dynamic high pressure homogenization on the aggregation state of soy protein. J Agric Food Chem 57:3556–3562CrossRefGoogle Scholar
  79. 79.
    Keller S (2013) Paper drying in the manufacturing process. In: Banik G, Brückle I (eds) Paper and water, 2nd edn. Butterworth Heinemann, Oxiford, pp p173–211Google Scholar
  80. 80.
    Kim BY (2014) Investigation of coating color penetration depending on the properties of base paper. J Korea TAPPI 46(2):16–21Google Scholar
  81. 81.
    Klemm D, Kraner F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(2):5438–5466CrossRefGoogle Scholar
  82. 82.
    Kobayashi S, Sakamoto J, Kimura S (2001) In vitro synthesis of cellulose and related polysaccharides. Progr Polym Sci 26(9):1525–1560CrossRefGoogle Scholar
  83. 83.
    Kobayashi S, Uyama H, Masashi O (2001b) Enzymatic polymerization for precision polymer synthesis. Bull Chem Soc Jpn 74(4):635–613Google Scholar
  84. 84.
    Kolavali R (2013) Diffusion of ions in wood. Thesis, Chalmers University of TechnologyGoogle Scholar
  85. 85.
    Kumar V, Bollström R, Yang A et al (2014) Comparison of nano-and microfibrillated cellulose films. Cellulose 21(5):3443–3456CrossRefGoogle Scholar
  86. 86.
    Kumar A, Singh SP, Singh AK (2014) Preparation and characterization of cellulose nanofibers from bleached pulp using a mechanical treatment method. Tappi J 13(5):25–31Google Scholar
  87. 87.
    Lai YZ (2012) Wood and wood products. In: Kent J (ed) Handbook of industrial chemistry and biotechnology. Springer, Boston, pp 1057–1115CrossRefGoogle Scholar
  88. 88.
    Laine J, Lindström T, Nordmark GG et al (2002) Studies on topochemical modification of cellulosic fibres-part 2. The effect of carboxymethyl cellulose attachment on fibre swelling and paper strength. Nord Pulp Pap Res J 17(1):50–56Google Scholar
  89. 89.
    Lavoine N, Desloges I, Dufresne A et al (2012) Microfibrillated cellulose–its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90(2):735–764CrossRefGoogle Scholar
  90. 90.
    Lee KY, Tamelin T, Schulter K (2012) High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose. ACS Appl Mater Interfaces 4(8):4078–86CrossRefGoogle Scholar
  91. 91.
    Lengowski EC (2016) Formation and characterization of films with nanocellulose. Federal University of Paraná, ThesisGoogle Scholar
  92. 92.
    Lengowski EC, Muñiz GIB, Nisgoski S et al (2013) Cellulose acquirement evaluation methods with different degrees of crystallinity. Sci Forest 41(98):185–194Google Scholar
  93. 93.
    Lengowski EC, Bonfatti EA Jr (2017) Incorporation of amphoteric starch and nanocellulose in paper. In: Paper presented at the 1st semana de aperfeiçoamento em engenharia florestal, 17–24 July 2017. Federal University of Paraná, Brazil, Curitiba cityGoogle Scholar
  94. 94.
    Lenze CJ, Peksa CA, Sun W et al (2016) Intact and broken cellulose nanocrystals as model nanoparticles to promote dewatering and fine-particle retention during papermaking. Cellulose 23(6):3951–3962Google Scholar
  95. 95.
    Li W, Wang R, Liu S (2011) Nanocrystalline cellulose prepared from softwood kraft pulp via ultrasonic-assisted hydrolysis. BioResources 6(4):4271–4281Google Scholar
  96. 96.
    Li J, Wei X, Wang Q et al (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90(4):1609–1613CrossRefGoogle Scholar
  97. 97.
    Liu C, Li B, Du H et al (2016) Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Carbohydr Polym 151:716–724CrossRefGoogle Scholar
  98. 98.
    Liu Y, Sui Y, Liu C et al (2018) A physically crosslinked polydopamine/nanocellulose hydrogel as potential versatile vehicles for drug delivery and wound healing. Carbohydr Polym 188:27–36CrossRefGoogle Scholar
  99. 99.
    Loranger E, Jradi K, Daneault C (2012) Nanocellulose production by ultrasound-assisted TEMPO oxidation of kraft pulp on laboratory and pilot scales. In: IEEE international ultrasonics symposium, IUS, Taipei, Taiwan, article number 6562112, pp 953–995Google Scholar
  100. 100.
    López-Rubio A, Lagaron JM, Ankerfors M et al (2007) Enhanced film forming and film properties of amylopectin using micro-fibrillated cellulose. Carbohydr Polym 68(4):718–727Google Scholar
  101. 101.
    MacDonald RG (ed) (1968) The pulping of wood, 2nd edn. Mcgraw-Hill Inc., New YorkGoogle Scholar
  102. 102.
    Manninen M, Kajanto I, Happonen J et al (2011) The effect of microfibrillated cellulose addition on drying shrinkage and dimensional stability of wood-free paper. Nord Pulp Pap Res J 26(3):297–305CrossRefGoogle Scholar
  103. 103.
    Mättänen M, Tikka P (2012) Determination of phenomena involved in impregnation of softwood chips. Part 1: method for calculating the true penetration degree. Nord Pulp Paper Res J 27(3):550–558Google Scholar
  104. 104.
    Mertaniemi H et al (2012) Functionalized porous microparticles of nanofibrillated cellulose for biomimetic hierarchically structured superhydrophobic surfaces. RSC Adv 2:2882–2886CrossRefGoogle Scholar
  105. 105.
    Missio AL, Mattos BD, Ferreira DF et al (2018) Nanocellulose-tannin films: from trees to sustainable active packaging. J Clean Prod 2:143–151CrossRefGoogle Scholar
  106. 106.
    Mohanty AK, Drzal LT, Misra M (2003) Nano reinforcement of bio-based polymers-the hope and reality. Polym Mater Sci Eng 88:60–61Google Scholar
  107. 107.
    Moon RJ, Martini A, Naim J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefGoogle Scholar
  108. 108.
    Nakatsubo F, Kamitakahara H, Hori M (1996) Cationic ring-opening polymerization of 3,6-Di-O-benzyl-α-D-glucose 1,2,4-Orthopivalate and the first chemical synthesis of cellulose. J Am Chem Soc 118(7):1677–1681CrossRefGoogle Scholar
  109. 109.
    Nelson K, Retsina T (2014) Innovative nanocellulose process breaks the cost barrier. Tappi J 13(5):19–23Google Scholar
  110. 110.
    Nygards S (2011) Nanocellulose in pigment coatings: aspects of barrier properties and printability in offset. Dissertation, Linköping UniversityGoogle Scholar
  111. 111.
    Oliveira RCP, Mateus M, Santos DMF (2018) Chronoamperometric and chronopotentiometric investigation of kraft black liquor. Int J Hydrog Energy.
  112. 112.
    Osong SH, Norgren S, Engstrand P (2016) Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review. Cellulose 23(1):93–123CrossRefGoogle Scholar
  113. 113.
    Österberg M, Vartiainen J, Lucenius J et al (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl Mater Interfaces 5(11):4640–4647Google Scholar
  114. 114.
    Pääkkö M, Ankerfors M, Kosonen H et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8(6):1934–1941Google Scholar
  115. 115.
    Podsiadlo P, Choi S-Y, Shim B et al (2005) Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals. Biomacromol 6(6):2914–2918CrossRefGoogle Scholar
  116. 116.
    Potulski DC (2016) Influence of nanocellulose on the physical and mechanical properties of primary and recycled paper of Pinus and Eucalyptus. Federal University of Paraná, ThesisGoogle Scholar
  117. 117.
    Potulski DC, Muñiz GIB, Klock U et al (2014) The influence of incorporation of microfibrillated cellulose on mechanical strength properties of paper. Sci Forest 42(103):345–351Google Scholar
  118. 118.
    Rahimi M, Behrooz R (2011) Effect of cellulose characteristic and hydrolyze conditions on morphology and size of nanocrystal cellulose extracted from wheat straw. Int J Polym Mater Po 60(8):529–541CrossRefGoogle Scholar
  119. 119.
    Rampazzo R, Alkan D, Gazzoti S et al (2017) Cellulose nanocrystals from lignocellulosic raw materials; for oxygen barrier coatings on food packaging films. Packag Technol Sci.
  120. 120.
    Rantanen J, Maloney TC (2013) Press dewatering and nip rewetting of paper containing nano-and microfibril cellulose. Nord Pulp Pap Res J 28(4):582–587CrossRefGoogle Scholar
  121. 121.
    Rantanen J, Pirttiniemi J, Kuosmanen P et al (2014) Development of a microfibrillated cellulose composite web forming method. In: Paper presented at TAPPI international conference on nanotechnology for renewable materials, TAPPI, Vancouver, 23–26 June 2014Google Scholar
  122. 122.
    Richmond F (2014) Cellulose nanofibers use in coated paper. University of Maine, ThesisGoogle Scholar
  123. 123.
    Robles NB (2014) Tailoring cellulose nanofibrils for advanced materials. KTH Royal Institute of Technology, StockholmGoogle Scholar
  124. 124.
    Rodionova G, Lenes M, Eriksen Ø et al (2011) Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18(1):127–134CrossRefGoogle Scholar
  125. 125.
    Rojas J, Bedoya M, Ciro Y (2015) Current trends in the production of cellulose nanoparticles and nanocomposites for biomedical applications. In: Poletto M, Ornaghi HL Jr (eds) Cellulose—fundamental aspects and current trends. InTech, Rijeka, pp 193–228Google Scholar
  126. 126.
    Róz ALD (2003) The future of plastics: biodegradable and photodegradable. Polymers 13(4):4–5Google Scholar
  127. 127.
    Sacui IA, Nieuwendaal RC, Burnett DJ et al (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6(9):6127–6138CrossRefGoogle Scholar
  128. 128.
    Saini S, Sillard C, Belgacem MN et al (2016) Nisin anchored cellulose nanofibers for long term antimicrobial active food packaging. RSC Adv 6:12437–12445Google Scholar
  129. 129.
    Saito T, Isogai A (2005) A novel method to improve wet strength of paper. Tappi J 4(3):3–8Google Scholar
  130. 130.
    Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491CrossRefGoogle Scholar
  131. 131.
    Saito T, Nishiyama Y, Putaux J-L et al (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromol 7(6):1687–1691CrossRefGoogle Scholar
  132. 132.
    Samir M, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromol 6:612–626CrossRefGoogle Scholar
  133. 133.
    Samyn P, Barhoum A, Öhlund T et al (2018) Review: nanoparticles and nanostructured materials in papermaking. J Mater Sci 53(1):146–184CrossRefGoogle Scholar
  134. 134.
    Santos SD, Sansígolo CA (2007) Wood basic density effect of Eucalyptus grandis x Eucalyptus urophylla clones on bleached pulp quality. Ciên Flor 17(1):53–63CrossRefGoogle Scholar
  135. 135.
    Saunders RE, Pawlak JJ, Lee JM (2014) Properties of surface acetylated microfibrillated cellulose relative to intra- and inter-fibril bonding. Cellulose 21(3):1541–1552CrossRefGoogle Scholar
  136. 136.
    Segura TES, Santos JRS, Sarto C et al (2016) Effect of kappa number variation on modified pulping of Eucalyptus. BioResources 11(4):9842–9855CrossRefGoogle Scholar
  137. 137.
    Segura TES, Zanão M, Santos JRS et al (2012) Kraft pulping of the main hardwoods used around the world for pulp and paper production. In: 2012 TAPPI PEERS CONFERENCE, TAPPI Press, pp 1592–1599Google Scholar
  138. 138.
    Segura TES, Silva Júnior FG (2016) Potential of C.citriodora for kraft pulp production. TAPPI J 15(3):159–164Google Scholar
  139. 139.
    Sehaqui H, Allais M, Zhou Q et al (2011) Wood cellulose biocomposites with fibrous structures at micro- and nanoscale. Comp Sci Technol 71(3):382–387CrossRefGoogle Scholar
  140. 140.
    Sehaqui H, Zhou Q, Berglund L (2013) Nanofibrillated cellulose for enhancement of strength in high-density paper structures. Nord Pulp Pap Res J 28(2):182–189CrossRefGoogle Scholar
  141. 141.
    Serviço Nacional De Aprendizagem Industrial (2013) Cellulose. Senai, São PauloGoogle Scholar
  142. 142.
    Sharma S, Zhang X, Nair SS et al (2014) Thermally enhanced high performance cellulose nano fibril barrier membranes. RSC Adv 4:45136–45142CrossRefGoogle Scholar
  143. 143.
    Shatkin JA, Wegner TH, Bilek EM et al (2014) Market projections of cellulose nanomaterial-enabled products—part 1: applications. Tappi J 13(5):9–12Google Scholar
  144. 144.
    Sinko R, Qin X, Keten S (2015) Interfacial mechanics of cellulose nanocrystals. MRS Bull 40(4):340–348CrossRefGoogle Scholar
  145. 145.
    Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromol 10(2):425–432CrossRefGoogle Scholar
  146. 146.
    Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRefGoogle Scholar
  147. 147.
    Siró I, Plackett D, Hedenqvist M et al (2011) Highly transparent films from carboxymethylated microfibrillated cellulose: the effect of multiple homogenization steps on key properties. J Appl Polym Sci 119(5):2652–2660CrossRefGoogle Scholar
  148. 148.
    Sixta H (2006) Handbook of pulp. Wiley-VCH Verlag GmbH & Co, KGaA, WeinheimCrossRefGoogle Scholar
  149. 149.
    Sjöström E (2013) Wood chemistry fundamentals and applications. Academic Press, New YorkGoogle Scholar
  150. 150.
    Smook G (2016) Handbook for pulp and paper technologists. TAPPI Press, AtlantaGoogle Scholar
  151. 151.
    Sofla MRK, Brown RJ, Tsuzuki T et al (2016) A comparison of cellulose nanocrystals and cellulose nanofibers extracted from bagasse using acid and ball milling methods. Adv Nat Sci Nanosci Nanotech 7:035004Google Scholar
  152. 152.
    Souza AC, Benze R, Ferrão ES et al (2012) Cassava starch biodegradable films: influence of glycerol and clay nanoparticles content on tensile and barrier properties and glass transition temperature. LWT J Food Sci Technol 46(1):110–117CrossRefGoogle Scholar
  153. 153.
    Spence KL, Venditti RA, Rojas OJ et al (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17(4):835–848CrossRefGoogle Scholar
  154. 154.
    Spence KL, Venditti RA, Rojas OJ et al (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18(4):1097–1111CrossRefGoogle Scholar
  155. 155.
    Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Res 48(24):11211–9CrossRefGoogle Scholar
  156. 156.
    Su J, Mosse WKL, Sharman S et al (2013) Effect of tethered and free microfibrillated cellulose (MFC) on the properties of paper composites. Cellulose 20(4):1925–1935CrossRefGoogle Scholar
  157. 157.
    Swinehart D (2012) Fundamentals of refining. MeadWestvaco Center for Packaging Innovation, RayleighGoogle Scholar
  158. 158.
    Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85CrossRefGoogle Scholar
  159. 159.
    Taipale T, Österberg M, Nykänen A et al (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspensions and paper strength. Cellulose 17(5):1005–1020CrossRefGoogle Scholar
  160. 160.
    Taiz L, Zeiger E (2017) Plant physiology, 6th edn. Sinauer Associates, SunderlandGoogle Scholar
  161. 161.
    Technical Association of Pulp and Paper Industry (2013) T 236 om-13: kappa number of pulp. TAPPI Press, AtlantaGoogle Scholar
  162. 162.
    Thoorens G, Krier F, Leclercq B et al (2014) Microcrystalline cellulose, a direct compression binder in a quality by design environment—a review. I J Pharm 473(1–2):64–72Google Scholar
  163. 163.
    Tognetta L, Santos O, Dragoni O et al (2014) Paper. SENAI, São PauloGoogle Scholar
  164. 164.
    Torvinen K (2014) Binding fillers for high filler content papers by using CNF/CMF. In: Paper presented at international conference on nanotechnology for renewable materials, TAPPI, Vancouver, 23–26 June 2014Google Scholar
  165. 165.
    Tuovinen L, Peltonen S, Jarvinen K (2003) Drug release from starch-acetate films. J Control Release 91(4):345–354CrossRefGoogle Scholar
  166. 166.
    Usta I (2005) A review of the configuration of bordered pits to simulate the fluid flow. Maderas Cien Tecnol 7(2):121–132Google Scholar
  167. 167.
    Van Heiningen ARP (2006) Converting a kraft pulp mill into an integrated forest biorefinery. Pulp Pap Canada 107(6):38–43Google Scholar
  168. 168.
    Valenzuela A, Bentley JM, Lorenz RD (2005) Evaluation of torsional oscillations in paper machine sections. IEEE Trans IndusAppl 41(2):493–501Google Scholar
  169. 169.
    Viana LC, Muñiz GIB, Hein PRG et al (2016) NIR spectroscopy can evaluate the crystallinity and the tensile and burst strengths of nanocellulosic films. Maderas Cienc Tecnol 18(3):493–504Google Scholar
  170. 170.
    Viana LC, Muniz GIB, Magalhaes WLE (2017) Physical and mechanical properties of nano-structed films produced from the unbleached Pinus sp. kraft pulp. Sci Forest 45(116): 653–662Google Scholar
  171. 171.
    Vivian MA, Segura TES, Bonfatti Júnior EA et al (2015) Wood quality of Pinus taeda and Pinus sylvestris for kraft pulp production. Sci Forest 43(105):183–191Google Scholar
  172. 172.
    Vroom KE (1957) The H factor: a means of expressing cooking times and temperatures as a single variable. Pulp Pap Canada 58(3):228–231Google Scholar
  173. 173.
    Wang Y, Cao X, Zhang L (2006) Effects of cellulose whiskers on properties of soy protein thermoplastics. Macromol Biosci 6(7):524–531CrossRefGoogle Scholar
  174. 174.
    Wang H, Li D, Zhang R (2013) Preparation of ultralong cellulose nanofibers and optically transparent nanopapers derived from waste corrugated paper pulp. BioResources 8:1374–1384Google Scholar
  175. 175.
    Wang B, Sain M (2007) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67(11–12):2521–2527CrossRefGoogle Scholar
  176. 176.
    Wang B, Sain M (2007) Dispersion of soybean stock-based nanofiber in a plastic matrix. Polym Int 56(4):538–546CrossRefGoogle Scholar
  177. 177.
    Wang B, Sain M, Oksman K (2007) Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl Compos Mater 14:89–103CrossRefGoogle Scholar
  178. 178.
    Wang Y, Wei Y, Li J et al (2013) Homogeneous isolation of nanocellulose from cotton cellulose by high pressure homogenization. J Mater Sci Chem Eng 1(5):49–52Google Scholar
  179. 179.
    Wang Q, Zhao X, Zhu JY (2014) Kinetics of strong acid hydrolysis of a bleached kraft pulp for producing cellulose nanocrystals (CNCs). Ind Eng Chem Res 53(27):11007–11014CrossRefGoogle Scholar
  180. 180.
    Wegner T, Skog KE, Ince PJ et al (2010) Uses and desirable properties of wood in the 21st century. J For 108(4):165–173Google Scholar
  181. 181.
    Wågberg L, Decher G, Norgren M et al (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795CrossRefGoogle Scholar
  182. 182.
    Xie C, Liu Z-M, Wu P et al (2013) Optimization of preparation technology of alkali pretreated reed pulp nano-cellulose. Chem Ind For Prod 33(1):32–36Google Scholar
  183. 183.
    Xu Q, Li W, Cheng Z et al (2014) TEMPO/NaBr/NaClO-mediated surface oxidation of nanocrystalline cellulose and its microparticulate retention system with cationic polyacrylamide. BioResources 9(1):994–1006Google Scholar
  184. 184.
    Xu Y, Yin X, Lin T et al (2018) Silica retention by the addition of sodium metaaluminate during the impregnation stage of bamboo kraft pulping. J Wood Chem Technol 38(1):35–43CrossRefGoogle Scholar
  185. 185.
    Zeni M et al (2015) Preparation of microcellulose (Mcc) and nanocellulose (Ncc) from eucalyptus kraft ssp pulp. Polym Sci 1:1–5Google Scholar
  186. 186.
    Zeni M, Favero D, Pacheco K et al (2015) Preparation of microcellulose (Mcc) and nanocellulose (Ncc) from Eucalyptus kraft ssp pulp. Polym Sci 1:1–5Google Scholar
  187. 187.
    Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79:1086–1093CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Elaine Cristina Lengowski
    • 1
  • Eraldo Antonio Bonfatti Júnior
    • 2
  • Marina Mieko Nishidate Kumode
    • 3
  • Mayara Elita Carneiro
    • 2
  • Kestur Gundappa Satyanarayana
    • 4
    • 5
    Email author
  1. 1.Faculty of Forestry EngineeringFederal University of Mato Grosso (UFMT)CuiabáBrazil
  2. 2.Department of Forest Engineering and Technology (DETF)Federal University of Paraná (UFPR)CuritibaBrazil
  3. 3.Laboratory of WoodPontifical Catholic UniversityCuritibaBrazil
  4. 4.PIPE & Department of ChemistryFederal University of ParanaCuritibaBrazil
  5. 5.Poornaprajna Scientific Research Institute (PPISR)Devanahalli, BangaloreIndia

Personalised recommendations