Advertisement

Electrical Properties of Sustainable Nano-Composites Containing Nano-Fillers: Dielectric Properties and Electrical Conductivity

  • Sabzoi Nizamuddin
  • Sabzoi Maryam
  • Humair Ahmed Baloch
  • M. T. H. Siddiqui
  • Pooja Takkalkar
  • N. M. Mubarak
  • Abdul Sattar Jatoi
  • Sadaf Aftab Abbasi
  • G. J. GriffinEmail author
  • Khadija Qureshi
  • Nhol Kao
Chapter

Abstract

Nanocomposites containing nanofillers are remarkable products of nanotechnology. The application of nanomaterials as fillers in composites can confer extraordinary properties and, therefore, are considered promising for a range of applications. In this chapter, a detailed description of nanocomposite and nanofiller material is discussed. In addition, a brief summary of the dielectric properties and electrical conductivity of nanocomposite materials is provided. It is concluded that sustainable nanocomposite materials using nanofiller may possess high electrical conductivity and dielectric properties.

Keywords

Nanocomposite Nanofiller Dielectric properties Tangent loss Electrical conductivity 

References

  1. 1.
    Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40:1511–1575CrossRefGoogle Scholar
  2. 2.
    Venkatesh DN, Priya VK, Bhavitha K (2016) Polymer-matrix nanocomposites, processing, manufacturing and application: an overviewGoogle Scholar
  3. 3.
    Choudhary V, Gupta A (2011) Polymer/carbon nanotube nanocomposites. In: Carbon nanotubes-polymer nanocomposites, IntechCrossRefGoogle Scholar
  4. 4.
    Rezakazemi M, Zhang Z (2018) 2.29 Desulfurization materials. In: a2-Dincer I (ed) Comprehensive energy systems, Elsevier, Oxford, pp. 944–979CrossRefGoogle Scholar
  5. 5.
    Song W-L, Wang W, Veca LM, Kong CY, Cao M-S, Wang P, Meziani MJ, Qian H, LeCroy GE, Cao L (2012) Polymer/carbon nanocomposites for enhanced thermal transport properties–carbon nanotubes versus graphene sheets as nanoscale fillers. J Mater Chem 22:17133–17139CrossRefGoogle Scholar
  6. 6.
    Zhou B, Lin Y, Veca LM, Fernando KS, Harruff BA, Sun Y-P (2006) Luminescence polarization spectroscopy study of functionalized carbon nanotubes in a polymeric matrix. J Phys Chem B 110:3001–3006CrossRefGoogle Scholar
  7. 7.
    Kumar V, Rawal A (2016) Tuning the electrical percolation threshold of polymer nanocomposites with rod-like nanofillers. Polymer 97:295–299CrossRefGoogle Scholar
  8. 8.
    Sun L-L, Li B, Zhao Y, Zhong W-H (2010) Suppression of AC conductivity by crystalline transformation in poly (vinylidene fluoride)/carbon nanofiber composites. Polymer 51:3230–3237CrossRefGoogle Scholar
  9. 9.
    Dashti A, Harami HR, Rezakazemi M (2018) Accurate prediction of solubility of gases within H2-selective nanocomposite membranes using committee machine intelligent system. Int J Hydrogen Energy 43:6614–6624CrossRefGoogle Scholar
  10. 10.
    Rezakazemi M, Sadrzadeh M, Mohammadi T, Matsuura T (2017) Methods for the preparation of organic-inorganic nanocomposite polymer electrolyte membranes for fuel cells. In: Inamuddin D, Mohammad A, Asiri AM (eds) Organic-Inorganic composite polymer electrolyte membranes. Springer International Publishing, Cham, pp 311–325CrossRefGoogle Scholar
  11. 11.
    Rezakazemi M, Vatani A, Mohammadi T (2016) Synthesis and gas transport properties of crosslinked poly(dimethylsiloxane) nanocomposite membranes using octatrimethylsiloxy POSS nanoparticles. J Nat Gas Sci Eng 30:10–18Google Scholar
  12. 12.
    Rezakazemi M, Vatani A, Mohammadi T (2015) Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes. RSC Adv 5:82460–82470CrossRefGoogle Scholar
  13. 13.
    Rezakazemi M, Razavi S, Mohammadi T, Nazari AG (2011) Simulation and determination of optimum conditions of pervaporative dehydration of isopropanol process using synthesized PVA–APTEOS/TEOS nanocomposite membranes by means of expert systems. J Membr Sci 379:224–232CrossRefGoogle Scholar
  14. 14.
    Sodeifian G, Raji M, Asghari M, Rezakazemi M, Dashti A (2018) Polyurethane-SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation. Chin. J. Chem. EngGoogle Scholar
  15. 15.
    Rezakazemi M, Dashti A, Asghari M, Shirazian S (2017) H 2 -selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS. Int J Hydrogen Energy 42:15211–15225CrossRefGoogle Scholar
  16. 16.
    Rezakazemi M, Amooghin AE, Montazer-Rahmati MM, Ismail AF, Matsuura T (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog. Polym. Sci 39(5) 817–861CrossRefGoogle Scholar
  17. 17.
    Baheri B, Shahverdi M, Rezakazemi M, Motaee E, Mohammadi T (2014) Performance of PVA/NaA mixed matrix membrane for removal of water from ethylene glycol solutions by pervaporation. Chem Eng Commun 202:316–321CrossRefGoogle Scholar
  18. 18.
    Shahverdi M, Baheri B, Rezakazemi M, Motaee E, Mohammadi T (2013) Pervaporation study of ethylene glycol dehydration through synthesized (PVA-4A)/polypropylene mixed matrix composite membranes. Polym Eng Sci 53:1487–1493CrossRefGoogle Scholar
  19. 19.
    Rostamizadeh M, Rezakazemi M, Shahidi K, Mohammadi T (2013) Gas permeation through H2-selective mixed matrix membranes: experimental and neural network modeling. Int J Hydrogen Energy 38:1128–1135CrossRefGoogle Scholar
  20. 20.
    Rezakazemi M, Mohammadi T (2013) Gas sorption in H2-selective mixed matrix membranes: experimental and neural network modeling. Int J Hydrogen Energy 38:14035–14041CrossRefGoogle Scholar
  21. 21.
    Rezakazemi M, Shahidi K, Mohammadi T (2012) Sorption properties of hydrogen-selective PDMS/zeolite 4A mixed matrix membrane. Int J Hydrogen Energy 37:17275–17284CrossRefGoogle Scholar
  22. 22.
    Rezakazemi M, Shahidi K, Mohammadi T (2012) Hydrogen separation and purification using crosslinkable PDMS/zeolite a nanoparticles mixed matrix membranes. Int J Hydrogen Energy 37:14576–14589CrossRefGoogle Scholar
  23. 23.
    Thomas S, Rouxel D, Ponnamma D (2016) Spectroscopy of polymer nanocomposites, William AndrewGoogle Scholar
  24. 24.
    Rezakazemi M, Sadrzadeh M, Matsuura T (2018) Thermally stable polymers for advanced high-performance gas separation membranes. Progr. Energy Combust. Sci. 66:1–41CrossRefGoogle Scholar
  25. 25.
    Mutiso RM, Winey KI (2015) Electrical properties of polymer nanocomposites containing rod-like nanofillers. Prog Polym Sci 40:63–84CrossRefGoogle Scholar
  26. 26.
    Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V (2004) Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health Part A 67:87–107CrossRefGoogle Scholar
  27. 27.
    Njuguna J, Ansari F, Sachse S, Zhu H, Rodriguez V (2014) Nanomaterials, nanofillers, and nanocomposites: types and properties. In: Health and environmental safety of nanomaterials, Elsevier, pp. 3–27Google Scholar
  28. 28.
    Koster LJA, Mihailetchi VD, Ramaker R, Blom PW (2005) Light intensity dependence of open-circuit voltage of polymer: fullerene solar cells. Appl Phys Lett 86:123509CrossRefGoogle Scholar
  29. 29.
    Koster L, Mihailetchi V, Blom P (2006) Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells. Appl Phys Lett 88:093511CrossRefGoogle Scholar
  30. 30.
    Wu P-T, Ren G, Jenekhe SA (2010) Crystalline random conjugated copolymers with multiple side chains: tunable intermolecular interactions and enhanced charge transport and photovoltaic properties. Macromolecules 43:3306–3313CrossRefGoogle Scholar
  31. 31.
    Lenes M, Wetzelaer GJA, Kooistra FB, Veenstra SC, Hummelen JC, Blom PW (2008) Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells. Adv Mater 20:2116–2119CrossRefGoogle Scholar
  32. 32.
    Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:864CrossRefGoogle Scholar
  33. 33.
    Huang J-H, Li K-C, Chien F-C, Hsiao Y-S, Kekuda D, Chen P, Lin H-C, Ho K-C, Chu C-W (2010) Correlation between exciton lifetime distribution and morphology of bulk heterojunction films after solvent annealing. J Phys Chem C 114:9062–9069CrossRefGoogle Scholar
  34. 34.
    Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401CrossRefGoogle Scholar
  35. 35.
    Boldor D, Sanders T, Simunovic J (2004) Dielectric properties of in-shell and shelled peanuts at microwave frequencies. Trans-Am Soc Agric Eng 47:1159–1170CrossRefGoogle Scholar
  36. 36.
    Sosa-Morales M, Valerio-Junco L, López-Malo A, García H (2010) Dielectric properties of foods: reported data in the 21st century and their potential applications. LWT-Food Sci Technol 43:1169–1179CrossRefGoogle Scholar
  37. 37.
    Stone ML, Maness NO (2006) Plant biomass estimation using dielectric properties, ASABE paper, 15Google Scholar
  38. 38.
    Tripathi M, Sahu J, Ganesan P, Dey T (2015) Effect of temperature on dielectric properties and penetration depth of oil palm shell (OPS) and OPS char synthesized by microwave pyrolysis of OPS. Fuel 153:257–266CrossRefGoogle Scholar
  39. 39.
    Motasemi F, Afzal MT, Salema AA, Mouris J, Hutcheon R (2014) Microwave dielectric characterization of switchgrass for bioenergy and biofuel. Fuel 124:151–157CrossRefGoogle Scholar
  40. 40.
    Salema AA, Yeow YK, Ishaque K, Ani FN, Afzal MT, Hassan A (2013) Dielectric properties and microwave heating of oil palm biomass and biochar. Ind Crops Prod 50:366–374CrossRefGoogle Scholar
  41. 41.
    Sweeney JJ, Roberts JJ, Harben PE (2007) Study of dielectric properties of dry and saturated green river oil shale. Energy Fuels 21:2769–2777CrossRefGoogle Scholar
  42. 42.
    Nizamuddin S, Mubarak N, Tiripathi M, Jayakumar N, Sahu J, Ganesan P (2016) Chemical, dielectric and structural characterization of optimized hydrochar produced from hydrothermal carbonization of palm shell. Fuel 163:88–97CrossRefGoogle Scholar
  43. 43.
    Li B, Zhong W-H (2011) Review on polymer/graphite nanoplatelet nanocomposites. J Mater sci 46:5595–5614CrossRefGoogle Scholar
  44. 44.
    Li Y, Huang X, Hu Z, Jiang P, Li S, Tanaka T (2011) Large dielectric constant and high thermal conductivity in poly (vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites. ACS Appl Mater Interfaces 3:4396–4403CrossRefGoogle Scholar
  45. 45.
    Calame J (2006) Finite difference simulations of permittivity and electric field statistics in ceramic-polymer composites for capacitor applications. J Appl Phys 99:084101CrossRefGoogle Scholar
  46. 46.
    Herzberg M, Kang S, Elimelech M (2009) Role of extracellular polymeric substances (EPS) in biofouling of reverse osmosis membranes. Environ Sci Technol 43:4393–4398CrossRefGoogle Scholar
  47. 47.
    Dang Z-M, Wu J-P, Xu H-P, Yao S-H, Jiang M-J, Bai J (2007) Dielectric properties of upright carbon fiber filled poly (vinylidene fluoride) composite with low percolation threshold and weak temperature dependence. Appl Phys Lett 91:072912CrossRefGoogle Scholar
  48. 48.
    Li Y-J, Xu M, Feng J-Q, Dang Z-M (2006) Dielectric behavior of a metal-polymer composite with low percolation threshold. Appl Phys Lett 89:072902CrossRefGoogle Scholar
  49. 49.
    Lee AY, Tran VN (2006) Dielectric characterisation of high loss and low loss materials at 2450 MHz. In: Advances in microwave and radio frequency processing, Springer, pp. 77–84Google Scholar
  50. 50.
    Zhang Y-H, Dang Z-M, Fu S-Y, Xin JH, Deng J-G, Wu J, Yang S, Li L-F, Yan Q (2005) Dielectric and dynamic mechanical properties of polyimide–clay nanocomposite films. Chem Phys Lett 401:553–557CrossRefGoogle Scholar
  51. 51.
    Zhang X, Ma Y, Zhao C, Yang W (2014) High dielectric constant and low dielectric loss hybrid nanocomposites fabricated with ferroelectric polymer matrix and BaTiO3 nanofibers modified with perfluoroalkylsilane. Appl Surf Sci 305:531–538CrossRefGoogle Scholar
  52. 52.
    Yang K, Huang X, Huang Y, Xie L, Jiang P (2013) Fluoro-polymer@ BaTiO3 hybrid nanoparticles prepared via RAFT polymerization: toward ferroelectric polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application. Chem Mater 25:2327–2338CrossRefGoogle Scholar
  53. 53.
    Pradhan DK, Choudhary R, Samantaray B (2008) Studies of dielectric relaxation and AC conductivity behavior of plasticized polymer nanocomposite electrolytes. Int J Electrochem Sci 3:597–608Google Scholar
  54. 54.
    Balanis C (1989) In: Advanced enginerring electromechanics, Wiley, New YorkGoogle Scholar
  55. 55.
    Kasap S (1997) Principles of Electrical Engineering Materials, p 184Google Scholar
  56. 56.
    Sadiku MN (2014) Elements of electromagnetics, Oxford university pressGoogle Scholar
  57. 57.
    Lee YH, Bur AJ, Roth SC, Start PR, Harris RH (2005) Monitoring the relaxation behavior of nylon/clay nanocomposites in the melt with an online dielectric sensor. Polym Adv Technol 16:249–256CrossRefGoogle Scholar
  58. 58.
    Yuan J-K, Yao S-H, Dang Z-M, Sylvestre A, Genestoux M, Bai1 J (2011) Giant dielectric permittivity nanocomposites: realizing true potential of pristine carbon nanotubes in polyvinylidene fluoride matrix through an enhanced interfacial interaction. J Phys Chem C, 115(13) 5515–5521CrossRefGoogle Scholar
  59. 59.
    Paul D, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204CrossRefGoogle Scholar
  60. 60.
    Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44(9) 1624–1652CrossRefGoogle Scholar
  61. 61.
    Lu X, Zhang W, Wang C, Wen T-C, Wei Y (2011) One-dimensional conducting polymer nanocomposites: synthesis, properties and applications. Prog Polym Sci 36:671–712CrossRefGoogle Scholar
  62. 62.
    Al-Saleh MH, Sundararaj U (2009) A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47:2–22CrossRefGoogle Scholar
  63. 63.
    Cai Z, Wang X, Luo B, Hong W, Wu L, Li L (2017) Nanocomposites with enhanced dielectric permittivity and breakdown strength by microstructure design of nanofillers. Compos Sci Technol 151:109–114CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sabzoi Nizamuddin
    • 1
  • Sabzoi Maryam
    • 2
  • Humair Ahmed Baloch
    • 1
  • M. T. H. Siddiqui
    • 1
  • Pooja Takkalkar
    • 1
  • N. M. Mubarak
    • 3
  • Abdul Sattar Jatoi
    • 4
  • Sadaf Aftab Abbasi
    • 1
  • G. J. Griffin
    • 1
    Email author
  • Khadija Qureshi
    • 5
  • Nhol Kao
    • 1
  1. 1.School of EngineeringRMIT UniversityMelbourneAustralia
  2. 2.Department of Electrical EngineeringQuaid-e-Awam University of Engineering, Science, and TechnologyNawabshahPakistan
  3. 3.Department of Chemical Engineering, Faculty of Engineering and ScienceCurtin UniversitySarawakMalaysia
  4. 4.Department of Chemical EngineeringDawood University of Engineering and TechnologyKarachiPakistan
  5. 5.Department of Chemical EngineeringMehran University of Engineering and TechnologyJamshoroPakistan

Personalised recommendations