Synthesis, Characterization and Applications of Polyolefin Based Eco-Friendly Polymer Composites

  • Akash DeepEmail author
  • Deepanshu Bhatt
  • Vishal Shrivastav
  • Sanjeev K. Bhardwaj
  • Poonma Malik


Polymers are the widely used commodities in various sectors of manufacturing, including glass, metal, wood, paper, etc. Non-biodegradable polymers are needed to be phased out from commercial activities due to their adverse effects on ecology and environment. Polyolefins offer the possibility of developing more environmentally sustainable polymer products as they can be synthesized or blended with natural resins. Currently, polyolefin dominates the polymer to an extent of more than half of the total products synthesized globally. Their cost effectiveness, recyclability, chemical resistance to solvents, electrical properties, and durability and resistance to environmental stress make them materials of choice for a variety of large-scale industrial and household applications. The synthesis method and subsequent functionalization of polyolefin can influence their physical properties and define applicability for different applications. This chapter summarizes important information on the synthesis, functionalization, characterization, and applications of polyolefins.


Polyolefins Synthesis Characterization Applications 


  1. 1.
    Boffa LS, Novak BM (2000) Copolymerization of polar monomers with olefins using transition-metal complexes. Chem Rev 100:1479–1494CrossRefGoogle Scholar
  2. 2.
    Soares JB (2007) An overview of important microstructural distributions for polyolefin analysis. In: Macromolecular symposia. Wiley Online Library, pp 1–12Google Scholar
  3. 3.
    Pasch H (2001) Recent developments in polyolefin characterization. In: Macromolecular symposia. Wiley Online Library, pp 91–98Google Scholar
  4. 4.
    Alkhazaal A (2011) Characterization of ethylene/α-olefin copolymers made with a single-site catalyst using crystallization elution fractionation. University of WaterlooGoogle Scholar
  5. 5.
    Soares JB, McKenna T, Cheng C (2007) Coordination polymerization. Polym React Eng 29–117Google Scholar
  6. 6.
    Koltzenburg S, Maskos M, Nuyken O (2017) Introduction and basic concepts. In: Polymer chemistry. Springer, pp 1–16Google Scholar
  7. 7.
    Storr A, Jones K, Laubengayer A (1968) The partial hydrolysis of ethylalane compounds. J Am Chem Soc 90:3173–3177CrossRefGoogle Scholar
  8. 8.
    Vasile C, Seymour RB (2000) Handbook of polyolefins. Marcel Dekker, New YorkCrossRefGoogle Scholar
  9. 9.
    Sinn H (1995) Proposals for structure and effect of methylalumoxane based on mass balances and phase separation experiments. In: Macromolecular symposia. Wiley Online Library, pp 27–52Google Scholar
  10. 10.
    Kaminsky W (1998) Highly active metallocene catalysts for olefin polymerization. J Chem Soc Dalton Trans 1413–1418Google Scholar
  11. 11.
    Bubeck R (2002) Structure–property relationships in metallocene polyethylenes. Mater Sci Eng R Rep 39:1–28CrossRefGoogle Scholar
  12. 12.
    Patil AO (2000) Functional polyolefins. Chem Inno 30:19–24Google Scholar
  13. 13.
    Novák I, Borsig E, Hrčková LU, Fiedlerova A, Kleinova A, Pollak V (2007) Study of surface and adhesive properties of polypropylene grafted by maleic anhydride. Polym Eng Sci 47:1207–1212CrossRefGoogle Scholar
  14. 14.
    Dong J-Y, Hu Y (2006) Design and synthesis of structurally well-defined functional polyolefins via transition metal-mediated olefin polymerization chemistry. Coord Chem Rev 250:47–65CrossRefGoogle Scholar
  15. 15.
    Nakamura A, Ito S, Nozaki K (2009) Coordination-insertion copolymerization of fundamental polar monomers. Chem Rev 109:5215–5244CrossRefGoogle Scholar
  16. 16.
    Franssen NM, Reek JN, de Bruin B (2013) Synthesis of functional ‘polyolefins’: state of the art and remaining challenges. Chem Soc Rev 42:5809–5832CrossRefGoogle Scholar
  17. 17.
    Chung TM (2002) Functionalization of polyolefins. ElsevierGoogle Scholar
  18. 18.
    Boaen NK, Hillmyer MA (2005) Post-polymerization functionalization of polyolefins. Chem Soc Rev 34:267–275CrossRefGoogle Scholar
  19. 19.
    Bielawski CW, Grubbs RH (2007) Living ring-opening metathesis polymerization. Prog Polym Sci 32:1–29CrossRefGoogle Scholar
  20. 20.
    Opper KL, Fassbender B, Brunklaus G, Spiess HW, Wagener KB (2009) Polyethylene functionalized with precisely spaced phosphonic acid groups. Macromolecules 42:4407–4409CrossRefGoogle Scholar
  21. 21.
    Opper KL, Markova D, Klapper M, Müllen K, Wagener KB (2010) Precision phosphonic acid functionalized polyolefin architectures. Macromolecules 43:3690–3698CrossRefGoogle Scholar
  22. 22.
    Ouchi M, Terashima T, Sawamoto M (2009) Transition metal-catalyzed living radical polymerization: toward perfection in catalysis and precision polymer synthesis. Chem Rev 109:4963–5050CrossRefGoogle Scholar
  23. 23.
    Finch C (1985) Encyclopedia of polymer science and engineering, volume 2, anionic polymerisation to cationic polymerisation editor-in-chief Jacqueline I. Kroschwitz. In: Mark HF, Bikales NM, Overberger CG, Menges G (eds) Wiley-Interscience, New York, pp xxiv+ 814, subscription price£ 175.00 (US 205.00) single volume price £210.00(US 240.00). ISBN 0-471-88786-2 (vol 2), British Polymer Journal, vol 17, pp 377–377Google Scholar
  24. 24.
    Berkefeld A, Mecking S (2008) Coordination copolymerization of polar vinyl monomers H2C=CHX. Angew Chem Int Ed 47:2538–2542CrossRefGoogle Scholar
  25. 25.
    Lopez RG, D’Agosto F, Boisson C (2007) Synthesis of well-defined polymer architectures by successive catalytic olefin polymerization and living/controlled polymerization reactions. Prog Polym Sci 32:419–454CrossRefGoogle Scholar
  26. 26.
    Yanjarappa M, Sivaram S (2002) Recent developments in the synthesis of functional poly(olefin)s. Prog Polym Sci 27:1347–1398CrossRefGoogle Scholar
  27. 27.
    Amin SB, Marks TJ (2008) Versatile pathways for in situ polyolefin functionalization with heteroatoms: catalytic chain transfer. Angew Chem Int Ed 47:2006–2025CrossRefGoogle Scholar
  28. 28.
    Matsugi T, Kojoh SI, Kawahara N, Matsuo S, Kaneko H, Kashiwa N (2003) Synthesis and morphology of polyethylene-block-poly (methyl methacrylate) through the combination of metallocene catalysis with living radical polymerization. J Polym Sci Part A: Polym Chem 41:3965–3973CrossRefGoogle Scholar
  29. 29.
    Yagci Y, Tasdelen MA (2006) Mechanistic transformations involving living and controlled/living polymerization methods. Prog Polym Sci 31:1133–1170CrossRefGoogle Scholar
  30. 30.
    Rezakazemi M, Sadrzadeh M, Matsuura T (2018) Thermally stable polymers for advanced high-performance gas separation membranes. Prog Energy Combust Sci 66:1–41CrossRefGoogle Scholar
  31. 31.
    Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati MM, Ismail AF, Matsuura T (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39:817–861CrossRefGoogle Scholar
  32. 32.
    Chung T, Janvikul W (1999) Borane-containing polyolefins: synthesis and applications. J Organomet Chem 581:176–187CrossRefGoogle Scholar
  33. 33.
    Kaneyoshi H, Inoue Y, Matyjaszewski K (2005) Synthesis of block and graft copolymers with linear polyethylene segments by combination of degenerative transfer coordination polymerization and atom transfer radical polymerization. Macromolecules 38:5425–5435CrossRefGoogle Scholar
  34. 34.
    White JL, Kim EK (1991) Twin screw extrusion: technology and principles. Hanser, MunichGoogle Scholar
  35. 35.
    Salleh FM, Hassan A, Yahya R, Azzahari AD (2014) Effects of extrusion temperature on the rheological, dynamic mechanical and tensile properties of kenaf fiber/HDPE composites. Compos B Eng 58:259–266CrossRefGoogle Scholar
  36. 36.
    Mulinari DR, Voorwald HJ, Cioffi MOH, Da Silva MLC, da Cruz TG, Saron C (2009) Sugarcane bagasse cellulose/HDPE composites obtained by extrusion. Compos Sci Technol 69:214–219CrossRefGoogle Scholar
  37. 37.
    Mano B, Araújo J, Spinacé M, De Paoli M-A (2010) Polyolefin composites with curaua fibres: effect of the processing conditions on mechanical properties, morphology and fibres dimensions. Compos Sci Technol 70:29–35CrossRefGoogle Scholar
  38. 38.
    AlMaadeed MA, Nogellova Z, Mičušík M, Novak I, Krupa I (2014) Mechanical, sorption and adhesive properties of composites based on low density polyethylene filled with date palm wood powder. Mater Des 53:29–37CrossRefGoogle Scholar
  39. 39.
    Zhang M, Shan C, Liu L, Liao J, Chen Q, Zhu M, Wang Y, An L, Li N (2016) Facilitating anion transport in polyolefin-based anion exchange membranes via bulky side chains. ACS Appl Mater Interfaces 8:23321–23330CrossRefGoogle Scholar
  40. 40.
    Rao S, Jayaraman K, Bhattacharyya D (2012) Micro and macro analysis of sisal fibre composites hollow core sandwich panels. Compos B Eng 43:2738–2745CrossRefGoogle Scholar
  41. 41.
    Brito GF, Agrawal P, Araújo EM, de Mélo TJ (2012) Polylactide/biopolyethylene bioblends. Polímeros 22:427–429CrossRefGoogle Scholar
  42. 42.
    Castro D, Ruvolo-Filho A, Frollini E (2012) Materials prepared from biopolyethylene and curaua fibers: Composites from biomass. Polym Testing 31:880–888CrossRefGoogle Scholar
  43. 43.
    Jacob M, Francis B, Varughese K, Thomas S (2006) The effect of silane coupling agents on the viscoelastic properties of rubber biocomposites. Macromol Mater Eng 291:1119–1126CrossRefGoogle Scholar
  44. 44.
    Donath S, Militz H, Mai C (2004) Wood modification with alkoxysilanes. Wood Sci Technol 38:555–566CrossRefGoogle Scholar
  45. 45.
    Fang L, Chang L, Guo W-J, Chen Y, Wang Z (2014) Influence of silane surface modification of veneer on interfacial adhesion of wood–plastic plywood. Appl Surf Sci 288:682–689CrossRefGoogle Scholar
  46. 46.
    Xie Y, Krause A, Militz H, Steuernagel L, Mai C (2013) Effects of hydrophobation treatments of wood particles with an amino alkylsiloxane co-oligomer on properties of the ensuing polypropylene composites. Compos A Appl Sci Manuf 44:32–39CrossRefGoogle Scholar
  47. 47.
    Spiridon I, Darie RN, Bodîrlău R, Teacă C-A, Doroftei F (2013) Polypropylene-based composites reinforced by toluene diisocyanate modified wood. J Compos Mater 47:3451–3464CrossRefGoogle Scholar
  48. 48.
    Bodîrlau R, Teaca C-A, Resmerita A-M, Spiridon I (2012) Investigation of structural and thermal properties of different wood species treated with toluene-2, 4-diisocyanate. Cellul Chem Technol 46:381Google Scholar
  49. 49.
    Kabir M, Wang H, Lau K, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos B Eng 43:2883–2892CrossRefGoogle Scholar
  50. 50.
    Li Y (2014) Characterization of acetylated eucalyptus wood fibers and its effect on the interface of eucalyptus wood/polypropylene composites. Int J Adhes Adhes 50:96–101CrossRefGoogle Scholar
  51. 51.
    Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33CrossRefGoogle Scholar
  52. 52.
    Wei L, McDonald AG, Freitag C, Morrell JJ (2013) Effects of wood fiber esterification on properties, weatherability and biodurability of wood plastic composites. Polym Degrad Stab 98:1348–1361CrossRefGoogle Scholar
  53. 53.
    Ahmed AS, Islam MS, Hassan A, Haafiz MM, Islam KN, Arjmandi R (2014) Impact of succinic anhydride on the properties of jute fiber/polypropylene biocomposites. Fibers Polym 15:307CrossRefGoogle Scholar
  54. 54.
    Mamun AA, Heim H-P, Beg DH, Kim TS, Ahmad SH (2013) PLA and PP composites with enzyme modified oil palm fibre: a comparative study. Compos A Appl Sci Manuf 53:160–167CrossRefGoogle Scholar
  55. 55.
    Ortín A, López E, del Hierro P, Sancho-Tello J, Yau WW (2018) Simplified robust triple detection methods for high temperature GPC analysis of polyolefins. In: Macromolecular symposia. Wiley Online Library, pp 1700044Google Scholar
  56. 56.
    Song S, Fu Z, Xu J, Fan Z (2017) Synthesis of functional polyolefins via ring-opening metathesis polymerization of ester-functionalized cyclopentene and its copolymerization with cyclic comonomers. Polym Chem 8:5924–5933CrossRefGoogle Scholar
  57. 57.
    Jung M, Lee Y, Kwak S, Park H, Kim B, Kim S, Lee KH, Cho HS, Hwang KY (2016) Analysis of chain branch of polyolefins by a new proton NMR approach. Anal Chem 88:1516–1520CrossRefGoogle Scholar
  58. 58.
    Liu Y, Wang Z, Zhang X (2012) Characterization of supramolecular polymers. Chem Soc Rev 41:5922–5932CrossRefGoogle Scholar
  59. 59.
    Monrabal B (2013) Polyolefin characterization: recent advances in separation techniques. In: Polyolefins: 50 years after Ziegler and Natta I. Springer, pp 203–251Google Scholar
  60. 60.
    Pasch H, Malik MI (2016) Advanced separation techniques for polyolefins. SpringerGoogle Scholar
  61. 61.
    Serranti S, Bonifazi G (2010) Post-consumer polyolefins (PP-PE) recognition by combined spectroscopic sensing techniques. Open Waste Manag J 3(1):35–45CrossRefGoogle Scholar
  62. 62.
    Soares JB (2004) Polyolefins with long chain branches made with single-site coordination catalysts: a review of mathematical modeling techniques for polymer microstructure. Macromol Mater Eng 289:70–87CrossRefGoogle Scholar
  63. 63.
    Sugumaran V, Prakash S, Arora AK, Kapur GS, Narula AK (2017) Thermal cracking of potato-peel powder-polypropylene biocomposite and characterization of products—pyrolysed oils and bio-char. J Anal Appl Pyrol 126:405–414CrossRefGoogle Scholar
  64. 64.
    Behazin E, Misra M, Mohanty AK (2017) Sustainable biocomposites from pyrolyzed grass and toughened polypropylene: structure-property relationships. ACS Omega 2:2191–2199CrossRefGoogle Scholar
  65. 65.
    Ndiripo A, Albrecht A, Monrabal B, Wang J, Pasch H (2018) Chemical composition fractionation of olefin plastomers/elastomers by solvent and thermal gradient interaction chromatography. Macromol Rapid Commun 39(6):1700703CrossRefGoogle Scholar
  66. 66.
    Tronc E, Hernandez-Escobar C, Ibarra-Gomez R, Estrada-Monje A, Navarrete-Bolanos J, Zaragoza-Contreras E (2007) Blue agave fiber esterification for the reinforcement of thermoplastic composites. Carbohyd Polym 67:245–255CrossRefGoogle Scholar
  67. 67.
    Zhang Q, Chen P, Xie X, Cao X (2009) An effective method to identify the type and content of α-olefin in polyolefine copolymer by fourier transform infrared-differential scanning calorimetry. J Appl Polym Sci 113:3027–3032CrossRefGoogle Scholar
  68. 68.
    Awal A, Ghosh S, Sain M (2009) Thermal properties and spectral characterization of wood pulp reinforced bio-composite fibers. J Therm Anal Calorim 99:695–701CrossRefGoogle Scholar
  69. 69.
    Monrabal B (2006) Microstructure characterization of polyolefins. TREF and CRYSTAF. In: Studies in surface science and catalysis. Elsevier, pp 35–42Google Scholar
  70. 70.
    Monrabal B (2015) Separation of ethylene-propylene copolymers by crystallization and adsorption mechanisms. A journey inside the analytical techniques. In: Macromolecular symposia. Wiley Online Library, pp 147–166Google Scholar
  71. 71.
    Takeuchi D, Chiba Y, Takano S, Kurihara H, Kobayashi M, Osakada K (2017) Ethylene polymerization catalyzed by dinickel complexes with a double-decker structure. Polym Chem 8:5112–5119CrossRefGoogle Scholar
  72. 72.
    Xue Y-H, Bo S-Q, Ji X-L (2015) Comparison of chain structures between high-speed extrusion coating polyethylene resins by preparative temperature rising elution fractionation and cross-fractionation. Chin J Polym Sci 33:1586–1597CrossRefGoogle Scholar
  73. 73.
    Albrecht A, Jayaratne K, Jeremic L, Sumerin V, Pakkanen (2016) Describing and quantifying the chemical composition distribution in unimodal and multimodal ZN-polyethylene using CRYSTAF. J Appl Polym Sci 133(9):43089 (3–8)Google Scholar
  74. 74.
    Monrabal B, Sancho-Tello J, Mayo N, Romero L (2007) Crystallization elution fractionation. A new separation process for polyolefin resins. In: Macromolecular symposia. Wiley Online Library, pp 71–79Google Scholar
  75. 75.
    Monrabal B, Romero L, Mayo N, Sancho-Tello J (2009) Advances in crystallization elution fractionation. In: Macromolecular symposia. Wiley Online Library, pp 14–24Google Scholar
  76. 76.
    Fadeeva V, Tikhova V, Nikulicheva O, Oleynik I, Oleynik I (2010) Composition determination of post-metallocene olefin polymerization catalysts. J Struct Chem 51:186–191CrossRefGoogle Scholar
  77. 77.
    Young RJ, Lovell PA (2011) Introduction to polymers. CRC PressGoogle Scholar
  78. 78.
    Mialon L, Pemba AG, Miller SA (2010) Biorenewable polyethylene terephthalate mimics derived from lignin and acetic acid. Green Chem 12:1704–1706CrossRefGoogle Scholar
  79. 79.
    Prut E, Nedorezova P, Klyamkina A, Medintseva T, Zhorina L, Kuznetsova O, Chapurina A, Aladyshev A (2013) Blend polyolefin elastomers based on a stereoblock elastomeric PP. Polym Sci Ser A 55:177–185CrossRefGoogle Scholar
  80. 80.
    Yi J, Liu Y, Pan D, Cai X (2013) Synthesis, thermal degradation, and flame retardancy of a novel charring agent aliphatic—aromatic polyamide for intumescent flame retardant polypropylene. J Appl Polym Sci 127:1061–1068CrossRefGoogle Scholar
  81. 81.
    Jukić A, Faraguna F, Franjić I, Kuzmić S (2017) Molecular interaction and viscometric behavior of mixtures of polyolefin and poly (styrene-co-dodecyl methacrylate-co-octadecyl methacrylate) rheology modifiers in solution of lubricating base oil. J Ind Eng Chem 56:270–276CrossRefGoogle Scholar
  82. 82.
    Gururajan G, Ogale AA (2009) Molecular orientation evolution during low-density polyethylene blown film extrusion using real-time Raman spectroscopy. J Raman Spectrosc 40:212–217CrossRefGoogle Scholar
  83. 83.
    Cherukupalli S, Ogale A (2004) Integrated experimental–modelling study of microstructural development and kinematics in a blown film extrusion process: I. Real-time Raman spectroscopy measurements of crystallinity. Plast Rubber Compos 33:367–371CrossRefGoogle Scholar
  84. 84.
    Cherukupalli SS, Ogale AA (2004) Online measurements of crystallinity using Raman spectroscopy during blown film extrusion of a linear low-density polyethylene. Polym Eng Sci 44:1484–1490CrossRefGoogle Scholar
  85. 85.
    Kosaka P, Kawano Y, Petri H, Fantini M, Petri D (2007) Structure and properties of composites of polyethylene or maleated polyethylene and cellulose or cellulose esters. J Appl Polym Sci 103:402–411CrossRefGoogle Scholar
  86. 86.
    Serranti S, Gargiulo A, Bonifazi G (2011) Characterization of post-consumer polyolefin wastes by hyperspectral imaging for quality control in recycling processes. Waste Manag 31:2217–2227CrossRefGoogle Scholar
  87. 87.
    McKenna TF, Di Martino A, Weickert G, Soares JB (2010) Particle growth during the polymerisation of olefins on supported catalysts, 1–nascent polymer structures. Macromol React Eng 4:40–64CrossRefGoogle Scholar
  88. 88.
    Abboud M, Denifl P, Reichert KH (2005) Fragmentation of Ziegler-Natta catalyst particles during propylene polymerization. Macromol Mater Eng 290:558–564CrossRefGoogle Scholar
  89. 89.
    Iyer KA, Flores AM, Torkelson JM (2015) Comparison of polyolefin biocomposites prepared with waste cardboard, microcrystalline cellulose, and cellulose nanocrystals via solid-state shear pulverization. Polymer 75:78–87CrossRefGoogle Scholar
  90. 90.
    McMahon G (2008) Analytical instrumentation: a guide to laboratory, portable and miniaturized instruments. WileyGoogle Scholar
  91. 91.
    Fang C, Nie L, Liu S, Yu R, An N, Li S (2013) Characterization of polypropylene–polyethylene blends made of waste materials with compatibilizer and nano-filler. Compos B Eng 55:498–505CrossRefGoogle Scholar
  92. 92.
    Spiridon I (2014) I. Natural fiber-polyolefin composites. Mini-review. Cellul Chem Technol 48:599–611Google Scholar
  93. 93.
    Fávaro SL, Lopes MS, de Carvalho Neto AGV, de Santana RR, Radovanovic E (2010) Chemical, morphological, and mechanical analysis of rice husk/post-consumer polyethylene composites. Compos A Appl Sci Manuf 41:154–160CrossRefGoogle Scholar
  94. 94.
    May-Pat A, Valadez-González A, Herrera-Franco PJ (2013) Effect of fiber surface treatments on the essential work of fracture of HDPE-continuous henequen fiber-reinforced composites. Polym Test 32:1114–1122CrossRefGoogle Scholar
  95. 95.
    Chiu F-C, Yen H-Z, Lee C-E (2010) Characterization of PP/HDPE blend-based nanocomposites using different maleated polyolefins as compatibilizers. Polym Test 29:397–406CrossRefGoogle Scholar
  96. 96.
    Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930CrossRefGoogle Scholar
  97. 97.
    Yablon DG, Gannepalli A, Proksch R, Killgore J, Hurley DC, Grabowski J, Tsou AH (2012) Quantitative viscoelastic mapping of polyolefin blends with contact resonance atomic force microscopy. Macromolecules 45:4363–4370CrossRefGoogle Scholar
  98. 98.
    Radmacher M, Tillmann R, Gaub H (1993) Imaging viscoelasticity by force modulation with the atomic force microscope. Biophys J 64:735–742CrossRefGoogle Scholar
  99. 99.
    Young T, Monclus M, Burnett T, Broughton W, Ogin S, Smith P (2011) The use of the PeakForceTM quantitative nanomechanical mapping AFM-based method for high-resolution Young’s modulus measurement of polymers. Meas Sci Technol 22:125703CrossRefGoogle Scholar
  100. 100.
    Platz D, Tholén EA, Pesen D, Haviland DB (2008) Intermodulation atomic force microscopy. Appl Phys Lett 92:153106CrossRefGoogle Scholar
  101. 101.
    Rosa-Zeiser A, Weilandt E, Hild S, Marti O (1997) The simultaneous measurement of elastic, electrostatic and adhesive properties by scanning force microscopy: pulsed-force mode operation. Meas Sci Technol 8:1333CrossRefGoogle Scholar
  102. 102.
    Wang D, Fujinami S, Liu H, Nakajima K, Nishi T (2010) Investigation of reactive polymer–polymer interface using nanomechanical mapping. Macromolecules 43:5521–5523CrossRefGoogle Scholar
  103. 103.
    Hurley DC (2009) Contact resonance force microscopy techniques for nanomechanical measurements. In: Applied scanning probe methods, vol XI. Springer, pp 97–138Google Scholar
  104. 104.
    Cuenot S, Frétigny C, Demoustier-Champagne S, Nysten B (2003) Measurement of elastic modulus of nanotubes by resonant contact atomic force microscopy. J Appl Phys 93:5650–5655CrossRefGoogle Scholar
  105. 105.
    Gannepalli A, Yablon D, Tsou A, Proksch R (2011) Mapping nanoscale elasticity and dissipation using dual frequency contact resonance AFM. Nanotechnology 22:355705CrossRefGoogle Scholar
  106. 106.
    Killgore JP, Yablon D, Tsou A, Gannepalli A, Yuya P, Turner J, Proksch R, Hurley D (2011) Viscoelastic property mapping with contact resonance force microscopy. Langmuir 27:13983–13987CrossRefGoogle Scholar
  107. 107.
    Proksch R, Yablon DG (2012) Loss tangent imaging: theory and simulations of repulsive-mode tapping atomic force microscopy. Appl Phys Lett 100:073106CrossRefGoogle Scholar
  108. 108.
    Deplace F, Wang Z, Lynd NA, Hotta A, Rose JM, Hustad PD, Tian J, Ohtaki H, Coates GW, Shimizu F (2010) Processing-structure-mechanical property relationships of semicrystalline polyolefin-based block copolymers. J Polym Sci Part B: Polym Phys 48:1428–1437CrossRefGoogle Scholar
  109. 109.
    Mahanthappa MK, Lim LS, Hillmyer MA, Bates FS (2007) Control of mechanical behavior in polyolefin composites: integration of glassy, rubbery, and semicrystalline components. Macromolecules 40:1585–1593CrossRefGoogle Scholar
  110. 110.
    Patel AK, Trivedi P, Balani K (2014) Processing and mechanical characterization of compression-molded ultrahigh molecular weight polyethylene biocomposite reinforced with aluminum oxide. J Nanosci Nanoeng Appl 4:1–11CrossRefGoogle Scholar
  111. 111.
    Zia Q, Androsch R, Radusch H-J, Ingoliç E (2008) Crystal morphology of rapidly cooled isotactic polypropylene: a comparative study by TEM and AFM. Polym Bull 60:791CrossRefGoogle Scholar
  112. 112.
    S.R. Hartshorn, Structural adhesives: chemistry and technology, Springer Science & Business Media, 2012Google Scholar
  113. 113.
    Mujika F (2006) On the difference between flexural moduli obtained by three-point and four-point bending tests. Polym Test 25:214–220CrossRefGoogle Scholar
  114. 114.
    Junior R, Adalberto S, Zanchi CH, Carvalho RVD, Demarco FF (2007) Flexural strength and modulus of elasticity of different types of resin-based composites. Braz Oral Res 21:16–21CrossRefGoogle Scholar
  115. 115.
    Chung S, Yap A, Chandra S, Lim C (2004) Flexural strength of dental composite restoratives: comparison of biaxial and three-point bending test. J Biomed Mater Res B Appl Biomater 71:278–283CrossRefGoogle Scholar
  116. 116.
    Carlsson LA, Adams DF, Pipes RB (2014) Experimental characterization of advanced composite materials. CRC pressGoogle Scholar
  117. 117.
    Standard AS (2008) Standard test method for tensile properties of polymer matrix composite materials. ASTM D3039/D M 3039:2008Google Scholar
  118. 118.
    Menczel JD, Prime RB (2014) Thermal analysis of polymers: fundamentals and applications. WileyGoogle Scholar
  119. 119.
    Rowe RK, Islam M, Hsuan Y (2009) Effects of thickness on the aging of HDPE geomembranes. J Geotech Geoenvironmental Eng 136:299–309CrossRefGoogle Scholar
  120. 120.
    Corti A, Muniyasamy S, Vitali M, Imam SH, Chiellini E (2010) Oxidation and biodegradation of polyethylene films containing pro-oxidant additives: synergistic effects of sunlight exposure, thermal aging and fungal biodegradation. Polym Degrad Stab 95:1106–1114CrossRefGoogle Scholar
  121. 121.
    Dehbi A, Mourad A, Bouaza A (2011) Ageing effect on the properties of tri-layer polyethylene film used as greenhouse roof. Procedia Eng 10:466–471CrossRefGoogle Scholar
  122. 122.
    Baldwin FP, Strate GV (1972) Polyolefin elastomers based on ethylene and propylene. Rubber Chem Technol 45(3):709–881CrossRefGoogle Scholar
  123. 123.
    Samimi A (2012) Study an analysis and suggest new mechanism of 3 layer polyethylene coating corrosion cooling water pipeline in oil refinery in Iran. Int J Innov Appl Stud ISSR J 1(2):216–225Google Scholar
  124. 124.
    Castaneda H, Benetton XD (2008) SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions. Corros Sci 50:1169–1183CrossRefGoogle Scholar
  125. 125.
    Kempe M (2011) Overview of scientific issues involved in selection of polymers for PV applications. In: Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE, IEEE, pp 000085–000090Google Scholar
  126. 126.
    Czop M, Biegańska J Impact of selected chemical substances on the degradation of the polyolefin materials 66(4):307–314Google Scholar
  127. 127.
    Pant D (2011) Degradation of various low density polyethylene products on alumina surface with sulphuric acid—DTS technique. J Solid Waste Technol Manag 37:47–54CrossRefGoogle Scholar
  128. 128.
    Rubino M, Netramai S, Auras R, Annous BA (2010) Effect of chlorine dioxide gas on physical, thermal, mechanical, and barrier properties of polymeric packaging materials. J Appl Polym Sci 115:1742–1750CrossRefGoogle Scholar
  129. 129.
    Eng J, Sassi T, Steele T, Vitarelli G (2011) The effects of chlorinated water on polyethylene pipes. Plast Eng 67:18CrossRefGoogle Scholar
  130. 130.
    Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265CrossRefGoogle Scholar
  131. 131.
    Sheik S, Chandrashekar K, Swaroop K, Somashekarappa H (2015) Biodegradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi. Int Biodeterior Biodegradation 105:21–29CrossRefGoogle Scholar
  132. 132.
    Ammala A, Bateman S, Dean K, Petinakis E, Sangwan P, Wong S, Yuan Q, Yu L, Patrick C, Leong K (2011) An overview of degradable and biodegradable polyolefins. Prog Polym Sci 36:1015–1049CrossRefGoogle Scholar
  133. 133.
    Badia J, Strömberg E, Karlsson S, Ribes-Greus A (2012) Material valorisation of amorphous polylactide. Influence of thermo-mechanical degradation on the morphology, segmental dynamics, thermal and mechanical performance. Polym Degrad Stab 97:670–678CrossRefGoogle Scholar
  134. 134.
    Badia J, Strömberg E, Ribes-Greus A, Karlsson S (2011) A statistical design of experiments for optimizing the MALDI-TOF-MS sample preparation of polymers. An application in the assessment of the thermo-mechanical degradation mechanisms of poly (ethylene terephthalate). Anal Chim Acta 692:85–95CrossRefGoogle Scholar
  135. 135.
    Badia J, Vilaplana F, Karlsson S, Ribes-Greus A (2009) Thermal analysis as a quality tool for assessing the influence of thermo-mechanical degradation on recycled poly (ethylene terephthalate). Polym Test 28:169–175CrossRefGoogle Scholar
  136. 136.
    Desai V, Shenoy M, Gogate P (2008) Ultrasonic degradation of low-density polyethylene. Chem Eng Process 47:1451–1455CrossRefGoogle Scholar
  137. 137.
    Yoshiga A, Otaguro H, Parra DF, Lima LFC, Lugao AB (2009) Controlled degradation and crosslinking of polypropylene induced by gamma radiation and acetylene. Polym Bull 63:397–409CrossRefGoogle Scholar
  138. 138.
    Panda AK, Singh R, Mishra D (2010) Thermolysis of waste plastics to liquid fuel: a suitable method for plastic waste management and manufacture of value added products—a world prospective. Renew Sustain Energy Rev 14:233–248CrossRefGoogle Scholar
  139. 139.
    Shen L, Haufe J, Patel MK (2009) Product overview and market projection of emerging bio-based plastics PRO-BIP 2009, Report for European polysaccharide network of excellence (EPNOE) and European bioplastics 243Google Scholar
  140. 140.
    Bilici MK, Yükler Aİ, Kurtulmuş M (2011) The optimization of welding parameters for friction stir spot welding of high density polyethylene sheets. Mater Des 32:4074–4079CrossRefGoogle Scholar
  141. 141.
    Sanchis R, Fenollar O, García D, Sanchez L, Balart R (2008) Improved adhesion of LDPE films to polyolefin foams for automotive industry using low-pressure plasma. Int J Adhes Adhes 28:445–451CrossRefGoogle Scholar
  142. 142.
    Kanbur Y, Irimia-Vladu M, Głowacki ED, Voss G, Baumgartner M, Schwabegger G, Leonat L, Ullah M, Sarica H, Erten-Ela S (2012) Vacuum-processed polyethylene as a dielectric for low operating voltage organic field effect transistors. Org Electron 13:919–924CrossRefGoogle Scholar
  143. 143.
    Siddique R, Khatib J, Kaur I (2008) Use of recycled plastic in concrete: a review. Waste Manag 28:1835–1852CrossRefGoogle Scholar
  144. 144.
    Joseph SC, Douglas MF, Butler AF, Bastow DR, Salhus JE, Hartfel MA, inventors; 3M Innovative Properties Co, assignee (2014) Apparatus for spraying liquids, and disposable containers and liners suitable for use therewith. United States patent US 8,628,026.Google Scholar
  145. 145.
    Pace GV, Hartman TG (2010) Migration studies of 3-chloro-1, 2-propanediol (3-MCPD) in polyethylene extrusion-coated paperboard food packaging. Food Addit Contam 27:884–891CrossRefGoogle Scholar
  146. 146.
    Kirwan MJ, Plant S, Strawbridge JW (2011) Plastics in food packaging, Food and Beverage Packaging Technology, 2nd edn. pp 157–212CrossRefGoogle Scholar
  147. 147.
    Kriegel R, Huang X, Schultheis MW, Bippert DA, Insolia GE, Kolls B, Summerville S (2010) Bio-based polyethylene terephthalate packaging and method of making thereof. Google PatentsGoogle Scholar
  148. 148.
    Yuan X, Matsuyama Y, Chung TM (2010) Synthesis of functionalized isotactic polypropylene dielectrics for electric energy storage applications. Macromolecules 43:4011–4015CrossRefGoogle Scholar
  149. 149.
    Arutchelvi J, Sudhakar M, Arkatkar A, Doble M, Bhaduri S, Uppara PV (2008) Biodegradation of polyethylene and polypropylene. Indian J Biotechnol 07(1)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Akash Deep
    • 1
    Email author
  • Deepanshu Bhatt
    • 1
  • Vishal Shrivastav
    • 1
  • Sanjeev K. Bhardwaj
    • 1
  • Poonma Malik
    • 2
  1. 1.Nanotechnology Lab, CSIR-Central Scientific Instrument Organisation (CSIR-CSIO)ChandigarhIndia
  2. 2.CSIR-Central Scientific Instrument Organisation (CSIR-CSIO)ChandigarhIndia

Personalised recommendations