Inorganic Nanocomposite Hydrogels: Present Knowledge and Future Challenge

  • Nasrin MoiniEmail author
  • Arash Jahandideh
  • Gary Anderson


This chapter introduces and discusses the nanocomposite hydrogels, based on inorganic particles, including inorganic ceramics (clays), and nanofillers of carbon, silicon, metal, and metal oxide. Various nanoparticle preparation methods will be presented in brief. Depending on the inorganic particle types, assorted preparation methods for nanocomposite hydrogels, and their corresponding characterization methods will be assessed. Inorganic particles not only improve the mechanical strength of these soft materials (gels) but also confer specific properties into the gel networks; stimuli-responsive hydrogels are good examples. Nanocomposite hydrogels have been engineered to be used in various applications, including tissue engineering, drug delivery, water treatment, conductive materials, optoelectronic, and supercapacitors. Furthermore, stimuli-responsiveness feature, the ability of bio-fabrication, and the capability of 3D printing introduce them as potential candidates for the fabrication of smart materials with complicated structures.


Hydrogels Composite Inorganic nanoparticle Nanocomposite Gel networks Stimuli-responsive 


(1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide


2-acrylamido-2-methylpropane sulfonic acid




Acrylic acid


Carbon nanotube


Carboxy methyl cellulose


Cellulose nanocrystal


Cetyl trimethyl ammonium bromide




Double network


Ethylene glycol dimethacrylate




Graphene oxide






Hydroxyethoxyethyl metha-crylate


Hydroxyethyl methacrylate


Interpenetrating polymer network


Lower critical solution temperature


Magnetic field




N-(2-hydroxypropyl) methacrylamide




Nanocomposite Hydrogel






N-isopropyl acrylamide


Poly(acrylic acid)




Poly(ethylene glycol) acrylate


Poly(ethylene glycol) diacrylate


Poly(ethylene glycol) dimethacrylate


Poly(ethylene glycol)


Poly(ethylene oxide)




Poly(methacrylic acid)


Poly(methyl methacrylate)


Poly(N-isopropyl acrylamide)








Polyvinyl alcohol


Sodium acrylate


Sodium n-dodecyl sulfate


Tetraethyl orthosilicate


Vinyl acetate



  1. 1.
    Zohuriaan-Mehr MJ, Omidian H, Doroudiani S, Kabiri K (2010) Advances in non-hygienic applications of superabsorbent hydrogel materials. J Mater Sci 45(21):5711–5735CrossRefGoogle Scholar
  2. 2.
    Peppas NA (2012) Hydrogel. Introd Mater Med, pp 35–42Google Scholar
  3. 3.
    Akhtar MF, Hanif M, Ranjha NM (2016) Methods of synthesis of hydrogels… A review. Saudi Pharm J 24(5):554–559CrossRefGoogle Scholar
  4. 4.
    Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polym (Guildf) 49(8):1993–2007CrossRefGoogle Scholar
  5. 5.
    Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185(4706):117–118CrossRefGoogle Scholar
  6. 6.
    Chu L, Ju X, Xie R, Wang W (2013) Smart hydrogel functional materialsGoogle Scholar
  7. 7.
    Schexnailder P, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287(1):1–11CrossRefGoogle Scholar
  8. 8.
    Utech S, Boccaccini AR (2016) A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers, vol 51, no 1. Springer USGoogle Scholar
  9. 9.
    Laftah WA, Hashim S, Ibrahim AN (2011) Polymer hydrogels: a review. Polym Plast Technol Eng 50(14):1475–1486CrossRefGoogle Scholar
  10. 10.
    Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6(2):105–121CrossRefGoogle Scholar
  11. 11.
    Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S (2011) Superabsorbent hydrogel composites and nanocomposites: a review. Polym Compos 32(2):277–289CrossRefGoogle Scholar
  12. 12.
    Moini N, Kabiri K (2015) Effective parameters in surface cross-linking of acrylic-based water absorbent polymer particles using bisphenol A diethylene glycidyl ether and cycloaliphatic diepoxide. Iran Polym J 24(11):977–987CrossRefGoogle Scholar
  13. 13.
    Moini N, Kabiri K, Zohuriaan-Mehr MJ (2018) Surface treatment of superabsorbent. US Pat. 2018/0008960Google Scholar
  14. 14.
    Moini N, Kabiri K, Zohuriaan-Mehr MJ (2015) Practical improvement of SAP hydrogel properties via facile tunable cross-linking of the particles surface. Polym Plast Technol Eng 55(3):278–290CrossRefGoogle Scholar
  15. 15.
    Moini N, Kabiri K, Zohuriaan-mehr MJ, Esmaeili N (2015) Simple and efficient approach for recycling of fine acrylic-based superabsorbent waste. Polym Bull 73(4):1119–1133CrossRefGoogle Scholar
  16. 16.
    Moini N, Kabiri K, Zohuriaan-Mehr MJ, Omidian H, Esmaeili N (2017) Fine tuning of SAP properties via epoxy-silane surface modification. Polym Adv Technol 28(9):1132–1147CrossRefGoogle Scholar
  17. 17.
    Buchholz FL, Graham AT (1998) Modern superabsorbent polymer technology. Wiley, HobokenGoogle Scholar
  18. 18.
    Buchholz FL, Peppas NA (1994) Superabsorbent polymers. ACS, Washington DCCrossRefGoogle Scholar
  19. 19.
    Koetting MC, Peters JT, Steichen SD, Peppas NA (2015) Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater Sci Eng R Reports 93:1–49CrossRefGoogle Scholar
  20. 20.
    Zeldovich KB, Khokhlov AR (1999) Osmotically active and passive counterions in inhomogeneous polymer gels. Macromolecules 32(10):3488–3494CrossRefGoogle Scholar
  21. 21.
    Rutz AL, Shah RN (2016) Polymeric hydrogels as smart biomaterialsGoogle Scholar
  22. 22.
    Naficy S, Brown HR, Razal JM, Spinks GM, Whitten PG (2011) Progress toward robust polymer hydrogels. Aust J Chem 64(8):1007–1025CrossRefGoogle Scholar
  23. 23.
    Zhang YS, Khademhosseini A (2017) Advances in engineering hydrogels. Science, 356 (6337)Google Scholar
  24. 24.
    Zhao X (2014) Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10(5):672–687CrossRefGoogle Scholar
  25. 25.
    Peak CW, Wilker JJ, Schmidt G (2013) A review on tough and sticky hydrogels. Colloid Polym Sci 291(9):2031–2047CrossRefGoogle Scholar
  26. 26.
    Ilg P (2013) Stimuli-responsive hydrogels cross-linked by magnetic nanoparticles. Soft Matter 9(13):3465CrossRefGoogle Scholar
  27. 27.
    Haraguchi K, Uyama K, Tanimoto H (2011) Self-healing in nanocomposite hydrogels. Macromol Rapid Commun 32(16):1253–1258CrossRefGoogle Scholar
  28. 28.
    Gupta RB, Kompella UB (2006) Nanoparticle technology for drug delivery, vol 159. New YorkGoogle Scholar
  29. 29.
    Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, de Camargo ER, Barbosa DB (2009) The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents 34(2):103–110CrossRefGoogle Scholar
  30. 30.
    Thoniyot P, Tan MJ, Karim AA, Young DJ, Loh XJ (2015) Nanoparticle–hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv Sci 2(1–2):1–13Google Scholar
  31. 31.
    Schwartz VB et al (2012) Antibacterial surface coatings from zinc oxide nanoparticles embedded in poly (N-isopropylacrylamide) hydrogel surface layers. Adv Funct Mater 22(11):2376–2386CrossRefGoogle Scholar
  32. 32.
    Zhao X et al (2006) A kind of smart gold nanoparticle–hydrogel composite with tunable thermo-switchable electrical properties. New J Chem 30(6):915–920CrossRefGoogle Scholar
  33. 33.
    Zhao X, Ding X, Deng Z, Zheng Z, Peng Y, Long X (2005) Thermoswitchable electronic properties of a gold nanoparticle/hydrogel composite. Macromol Rapid Commun 26(22):1784–1787CrossRefGoogle Scholar
  34. 34.
    Baumann B, Wittig R, Lindén M (2017) Mesoporous silica nanoparticles in injectable hydrogels: factors influencing cellular uptake and viability. Nanoscale 9:12379–12390CrossRefGoogle Scholar
  35. 35.
    Chang C, Peng J, Zhang L, Pang D-W (2009) Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices. J Mater Chem 19(41):7771CrossRefGoogle Scholar
  36. 36.
    Villanueva ME et al (2016) Antimicrobial activity of starch hydrogel incorporated with copper nanoparticles. ACS Appl Mater Interfaces 8(25):16280–16288CrossRefGoogle Scholar
  37. 37.
    Li Y et al (2013) Magnetic hydrogels and their potential biomedical applications. Adv Funct Mater 23(6):660–672CrossRefGoogle Scholar
  38. 38.
    Liu TY, Hu SH, Liu TY, Liu DM, Chen SY (2006) Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. Langmuir 22(14):5974–5978CrossRefGoogle Scholar
  39. 39.
    Chen CH, Abate AR, Lee D, Terentjev EM, Weitz DA (2009) Microfluidic assembly of magnetic hydrogel particles with uniformly anisotropic structure. Adv Mater 21(31):3201–3204CrossRefGoogle Scholar
  40. 40.
    Jayaramudu T, Raghavendra GM, Varaprasad K, Sadiku R, Raju KM (2013) Development of novel biodegradable Au nanocomposite hydrogels based on wheat: for inactivation of bacteria. Carbohydr Polym 92(2):2193–2200CrossRefGoogle Scholar
  41. 41.
    Kim J-H, Lee TR (2006) Discrete thermally responsive hydrogel-coated gold nanoparticles for use as drug-delivery vehicles. Drug Dev Res 67:61–69CrossRefGoogle Scholar
  42. 42.
    Pardo-Yissar V, Gabai R, Shipway AN, Bourenko T, Willner I (2001) Gold nanoparticle/hydrogel composites with solvent-switchable electronic properties. Adv Mater 13(17):1320–1323CrossRefGoogle Scholar
  43. 43.
    Guo YG, Hu JS, Liang HP, Wan LJ, Bai CL (2003) Highly dispersed metal nanoparticles in porous anodic alumina films prepared by a breathing process of polyacrylamide hydrogel. Chem Mater 15(22):4332–4336CrossRefGoogle Scholar
  44. 44.
    Ghasemzadeh H, Ghanaat F (2014) Antimicrobial alginate/PVA silver nanocomposite hydrogel, synthesis and characterization. J Polym Res 21(3):355–369CrossRefGoogle Scholar
  45. 45.
    Mohan YM, Lee K, Premkumar T, Geckeler KE (2007) Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications. Polymer (Guildf) 48(1):158–164CrossRefGoogle Scholar
  46. 46.
    Murthy PSK, Mohan YM, Varaprasad K, Sreedhar B, Raju KM (2008) First successful design of semi-IPN hydrogel-silver nanocomposites: a facile approach for antibacterial application. J Colloid Interface Sci 318(2):217–224CrossRefGoogle Scholar
  47. 47.
    Zou X et al (2017) Preparation of a novel antibacterial chitosan-poly(ethylene glycol) cryogel/silver nanoparticles composites. J Biomater Sci Polym Ed 28(13):1324–1337CrossRefGoogle Scholar
  48. 48.
    Helminger M et al (2014) Synthesis and characterization of gelatin-based magnetic hydrogels. Adv Funct Mater 24(21):3187–3196CrossRefGoogle Scholar
  49. 49.
    Ozay O, Ekici S, Baran Y, Aktas N, Sahiner N (2009) Removal of toxic metal ions with magnetic hydrogels. Water Res 43(17):4403–4411CrossRefGoogle Scholar
  50. 50.
    Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng, C 57:414–433CrossRefGoogle Scholar
  51. 51.
    Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111(3):441–453CrossRefGoogle Scholar
  52. 52.
    Zhang D, Yang J, Bao S, Wu Q, Wang Q (2013) Semiconductor nanoparticle-based hydrogels prepared via self-initiated polymerization under sunlight, even visible light. Sci Rep 3(1):1399CrossRefGoogle Scholar
  53. 53.
    Castaneda L, Valle J, Yang N, Pluskat S, Slowinska K (2009) Collagen crosslinking with Au nanoparticles. Biomacromolecules 9(12):3383–3388CrossRefGoogle Scholar
  54. 54.
    Rose S, Prevoteau A, Elzière P, Hourdet D, Marcellan A, Leibler L (2013) Nanoparticle solutions as adhesives for gels and biological tissues. Nature 505(7483):382–385CrossRefGoogle Scholar
  55. 55.
    Carlsson L, Rose S, Hourdet D, Marcellan A (2010) Nano-hybrid self-crosslinked PDMA/silica hydrogels. Soft Matter 6(15):3619CrossRefGoogle Scholar
  56. 56.
    Gaharwar AK, Rivera CP, Wu CJ, Schmidt G (2011) Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles. Acta Biomater 7(12):4139–4148CrossRefGoogle Scholar
  57. 57.
    Wu H et al (2013) Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun 4:1943–1946CrossRefGoogle Scholar
  58. 58.
    Magasinski A et al (2010) Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl Mater Interfaces 2(11):3004–3010CrossRefGoogle Scholar
  59. 59.
    Liu G et al (2011) Polymers with tailored electronic structure for high capacity lithium battery electrodes. Adv Mater 23(40):4679–4683CrossRefGoogle Scholar
  60. 60.
    Bridel JS, Azaïs T, Morcrette M, Tarascon JM, Larcher D (2010) Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries. Chem Mater 22(3):1229–1241CrossRefGoogle Scholar
  61. 61.
    Gao G, Du G, Sun Y, Fu J (2015) Self-healable, tough, and ultrastretchable nanocomposite hydrogels based on reversible polyacrylamide/montmorillonite adsorption. ACS Appl Mater Interfaces 7(8):5029–5037CrossRefGoogle Scholar
  62. 62.
    Özkahraman B, Acar I, Emik S (2011) Removal of Cu 2+ and Pb 2+ ions using CMC based thermoresponsive nanocomposite hydrogel. Clean - Soil, Air, Water 39(7):658–664CrossRefGoogle Scholar
  63. 63.
    Gaharwar AK, Dammu SA, Canter JM, Wu C-J, Schmidt G (2011) Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite. Biomacromolecules 12:1641–1650CrossRefGoogle Scholar
  64. 64.
    Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials - a short review. Carbohydr Polym 82(2):227–232CrossRefGoogle Scholar
  65. 65.
    Liu R, Liang S, Tang X-Z, Yan D, Li X, Yu Z-Z (2012) Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J Mater Chem 22(28):14160CrossRefGoogle Scholar
  66. 66.
    Gaharwar AK et al (2013) Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv Mater 25(24):3329–3336CrossRefGoogle Scholar
  67. 67.
    Gaharwar AK et al (2012) Physically crosslinked nanocomposites from silicate-crosslinked PEO: mechanical properties and osteogenic differentiation of human mesenchymal stem cells. Macromol Biosci 12(6):779–793CrossRefGoogle Scholar
  68. 68.
    Kaşgöz H, Durmuş A, Ka A (2008) Enhanced swelling and adsorption properties of AAm-AMPSNa/clay hydrogel nanocomposites for heavy metal ion removal. Polym Adv Technol 19:213–220CrossRefGoogle Scholar
  69. 69.
    Yadollahi M, Farhoudian S, Namazi H (2015) One-pot synthesis of antibacterial chitosan/ silver bio-nanocomposite hydrogel beads as drug delivery systems. Int J Biol Macromol 79:37–43CrossRefGoogle Scholar
  70. 70.
    Mekewi M, Shebl A, Imam AI, Amin MS, Albert T (2012) Screening the insecticidal efficacy of nano ZnO synthesized via in-situ polymerization of crosslinked polyacrylic acid as a template. J Mater Sci Technol 28(11):961–968CrossRefGoogle Scholar
  71. 71.
    Utracki LA (2004) Clay-containing polymeric nanocomposites, vol 1. Shropshire, United KingdomGoogle Scholar
  72. 72.
    Nelson A, Cosgrove T (2004) A small-angle neutron scattering study of adsorbed poly(ethylene oxide) on laponite. Langmuir 20(6):2298–2304CrossRefGoogle Scholar
  73. 73.
    Loizou E et al (2005) Large scale structures in nanocomposite hydrogels. Macromolecules 38(6):2047–2049CrossRefGoogle Scholar
  74. 74.
    Kevadiya BD, Joshi GV, Patel HA, Ingole PG, Mody HM, Bajaj HC (2010) Montmorillonite-Alginate nanocomposites as a drug delivery system: Intercalation and in vitro release of vitamin B1 and vitamin B6. J Biomater Appl 25(2):161–177CrossRefGoogle Scholar
  75. 75.
    Chen J, Park H, Park K (1999) Synthesis of superporous hydrogels: hydrogels with fast swelling and superabsorbent properties. J Biomed Mater Res - Part A 44:53–62CrossRefGoogle Scholar
  76. 76.
    Bao J, Chen S, Wu B, Ma M, Shi Y, Wang X (2015) A novel foaming approach to prepare porous superabsorbent poly(sodium acrylic acid) resins. J Appl Polym Sci, 132(3):n/a–n/aGoogle Scholar
  77. 77.
    Kabiri K, Zohuriaan-Mehr MJ (2004) Porous superabsorbent hydrogel composites: synthesis, morphology and swelling rate. Macromol Mater Eng 289(7):653–661CrossRefGoogle Scholar
  78. 78.
    Omidian H, Rocca JG, Park K (2005) Advances in superporous hydrogels. J Control Release 102(1):3–12CrossRefGoogle Scholar
  79. 79.
    Demirtaş TT, Karakeçili AG, Gümüşderelioğlu M (2008) Hydroxyapatite containing superporous hydrogel composites: synthesis and in-vitro characterization. J Mater Sci 19:729–735Google Scholar
  80. 80.
    Kabiri K et al (2011) Superabsorbent polymer composites: does clay always improve properties? J Mater Sci 46(20):6718–6725CrossRefGoogle Scholar
  81. 81.
    Zheng Y, Zhu Y, Wang A (2014) Highly efficient and selective adsorption of malachite green onto granular composite hydrogel. Chem Eng J 257:66–73CrossRefGoogle Scholar
  82. 82.
    Wang L, Zhang J, Wang A (2008) Removal of methylene blue from aqueous solution using chitosan-g-poly(acrylic acid)/montmorillonite superadsorbent nanocomposite. Colloids Surf A Physicochem Eng Asp 322(1–3):47–53CrossRefGoogle Scholar
  83. 83.
    Shirsath SR, Patil AP, Patil R, Naik JB, Gogate PR, Sonawane SH (2013) Removal of brilliant green from wastewater using conventional and ultrasonically prepared poly(acrylic acid) hydrogel loaded with kaolin clay: a comparative study, vol 20, no 3. Elsevier B.VGoogle Scholar
  84. 84.
    Mahdavinia GR, Asgari A (2013) Synthesis of kappa-carrageenan-g-poly(acrylamide)/sepiolite nanocomposite hydrogels and adsorption of cationic dye. Polym Bull 70(8):2451–2470CrossRefGoogle Scholar
  85. 85.
    Liu Y, Zheng Y, Wang A (2010) Enhanced adsorption of methylene blue from aqueous solution by chitosan-g-poly (acrylic acid)/vermiculite hydrogel composites. J Environ Sci 22(4):486–493CrossRefGoogle Scholar
  86. 86.
    Zheng Y, Wang A (2009) Evaluation of ammonium removal using a chitosan-g-poly (acrylic acid)/rectorite hydrogel composite. J Hazard Mater 171(1–3):671–677CrossRefGoogle Scholar
  87. 87.
    Zheng Y, Wang A (2010) Enhanced adsorption of ammonium using hydrogel composites based on chitosan and halloysite. J Macromol Sci Part A Pure Appl Chem 47(1):33–38CrossRefGoogle Scholar
  88. 88.
    Wang Y, Wang W, Wang A (2013) Efficient adsorption of methylene blue on an alginate-based nanocomposite hydrogel enhanced by organo-illite/smectite clay. Chem Eng J 228:132–139CrossRefGoogle Scholar
  89. 89.
    Zheng Y, Wang A (2010) Removal of heavy metals using polyvinyl alcohol semi-IPN poly(acrylic acid)/tourmaline composite optimized with response surface methodology. Chem Eng J 162(1):186–193CrossRefGoogle Scholar
  90. 90.
    Saber-Samandari S, Saber-Samandari S, Gazi M (2013) Cellulose-graft-polyacrylamide/hydroxyapatite composite hydrogel with possible application in removal of Cu(II) ions, vol 73, no 11. Elsevier LtdGoogle Scholar
  91. 91.
    Wang X, Wang A (2010) Adsorption characteristics of chitosan-g-poly(acrylic acid)/attapulgite hydrogel composite for Hg(II) ions from aqueous solution. Sep Sci Technol 45(14):2086–2094CrossRefGoogle Scholar
  92. 92.
    Zhu Y, Zheng Y, Wang A (2015) Preparation of granular hydrogel composite by the redox couple for efficient and fast adsorption of La(III) and Ce(III). J Environ Chem Eng 3(2):1416–1425CrossRefGoogle Scholar
  93. 93.
    Anirudhan TS, Suchithra PS, Arauf T (2012) Kinetic and equilibrium profiles of adsorptive recovery of thorium (IV) from aqueous solutions using poly (methacrylic acid) grafted cellulose/bentonite superabsorbent composite kinetic and equilibrium profiles of adsorptive recovery of thorium (IV), no IVGoogle Scholar
  94. 94.
    Zhu Y, Zheng Y, Wang A (2015) A simple approach to fabricate granular adsorbent for adsorption of rare elements. Int J Biol Macromol 72:410–420CrossRefGoogle Scholar
  95. 95.
    Wang M, Li X, Hua W, Shen L, Yu X, Wang X (2016) Electrospun poly(acrylic acid)/silica hydrogel nanofibers scaffold for highly efficient adsorption of lanthanide ions and its photoluminescence performance. ACS Appl Mater Interfaces 8(36):23995–24007CrossRefGoogle Scholar
  96. 96.
    Zheng Y, Wang A (2015) Superadsorbent with three-dimensional networks: from bulk hydrogel to granular hydrogel. Eur Polym JGoogle Scholar
  97. 97.
    Yang X, Ni L (2012) Synthesis of hybrid hydrogel of poly(AM co DADMAC)/silica sol and removal of methyl orange from aqueous solutions. Chem Eng J 209:194–200CrossRefGoogle Scholar
  98. 98.
    Dhodapkar R, Rao NN, Pande SP, Nandy T, Devotta S (2007) Adsorption of cationic dyes on Jalshakti®, super absorbent polymer and photocatalytic regeneration of the adsorbent. React Funct Polym 67(6):540–548CrossRefGoogle Scholar
  99. 99.
    Ma X, Sun X, Chen J, Lei Y (2017) Natural or natural-synthetic hybrid polymer-based fluorescent polymeric materials for bio-imaging-related applications. Appl Biochem Biotechnol 183(2):461–487CrossRefGoogle Scholar
  100. 100.
    Zheng Y et al (2003) Immobilization of quantum dots in the photo-cross-linked poly (ethylene glycol)-based hydrogel, J Phys Chem B, pp 10464–10469Google Scholar
  101. 101.
    Cheng Z, Liu S, Beines PW, Ding N, Jakubowicz P, Knoll W (2008) Rapid and highly efficient preparation of water-soluble luminescent quantum dots via encapsulation by thermo-and redox-responsive hydrogels. Chem Mater 20:7215–7219CrossRefGoogle Scholar
  102. 102.
    Wang YQ et al (2017) Nanocomposite carbon dots/PAM fluorescent hydrogels and their mechanical properties. J Polym Res, 24(12)Google Scholar
  103. 103.
    Ruiz-Palomero C, Benítez-Martínez S, Soriano ML, Valcárcel M (2017) Fluorescent nanocellulosic hydrogels based on graphene quantum dots for sensing laccase. Anal Chim Acta 974:93–99CrossRefGoogle Scholar
  104. 104.
    Yang J, Han C-R, Duan J-F, Xu F, Sun R-C (2013) Insitu grafting silica nanoparticles reinforced nanocomposite hydrogels. Nanoscale 5(22):10858CrossRefGoogle Scholar
  105. 105.
    Kakkar P, Madhan B (2016) Fabrication of keratin-silica hydrogel for biomedical applications. Mater Sci Eng, C 66:178–184CrossRefGoogle Scholar
  106. 106.
    Algi MP, Okay O (2014) Highly stretchable self-healing poly(N, N-dimethylacrylamide) hydrogels. Eur Polym. J 59:113–121CrossRefGoogle Scholar
  107. 107.
    Haque MA, Kurokawa T, Kamita G, Gong JP (2011) Lamellar bilayers as reversible sacrificial bonds to toughen hydrogel: Hysteresis, self-recovery, fatigue resistance, and crack blunting. Macromolecules 44(22):8916–8924CrossRefGoogle Scholar
  108. 108.
    Shin SR, Bae H, Cha M, Mun Y, Chen Y, Tekin H (2012) Carbon Nanotube Reinforced Hybrid Microgels as Sca ff old Materials for Cell. ACS Nano 6(1):362–372CrossRefGoogle Scholar
  109. 109.
    Zhong M, Liu Y-T, Xie X-M (2015) Self-healable, super tough graphene oxide–poly(acrylic acid) nanocomposite hydrogels facilitated by dual cross-linking effects through dynamic ionic interactions. J Mater Chem B 3(19):4001–4008CrossRefGoogle Scholar
  110. 110.
    Fabbri P et al (2012) In-situ graphene oxide reduction during UV-photopolymerization of graphene oxide/acrylic resins mixtures. Polym (United Kingdom) 53(26):6039–6044Google Scholar
  111. 111.
    Shi K et al (2015) Near-infrared light-responsive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels with ultrahigh tensibility. ACS Appl Mater Interfaces 7(49):27289–27298CrossRefGoogle Scholar
  112. 112.
    Schexnailder P, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287:1–11CrossRefGoogle Scholar
  113. 113.
    Jaiswal MK et al (2014) Thermoresponsive magnetic hydrogels as theranostic nanoconstructs. ACS Appl Mater Interfaces 6(9):6237–6247CrossRefGoogle Scholar
  114. 114.
    Khademhosseini A, Langer R (2007) Microengineered hydrogels for tissue engineering. Biomaterials 28(34):5087–5092CrossRefGoogle Scholar
  115. 115.
    Gurkan UA, Tasoglu S, Kavaz D, Demirel MC, Demirci U (2012) Emerging technologies for assembly of microscale hydrogels. Adv Healthc Mater 1(2):149–158CrossRefGoogle Scholar
  116. 116.
    Satarkar NS, Biswal D, Hilt JZ (2010) Hydrogel nanocomposites: a review of applications as remote controlled biomaterials. Soft Matter 6(11):2364CrossRefGoogle Scholar
  117. 117.
    Jain A, Duvvuri LS, Farah S, Beyth N, Domb AJ, Khan W (2014) Antimicrobial polymers. Adv Healthc Mater 3(12):1969–1985CrossRefGoogle Scholar
  118. 118.
    Sudheesh Kumar PT et al (2012) Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: In vitro and in vivo evaluation. ACS Appl Mater Interfaces 4(5):2618–2629CrossRefGoogle Scholar
  119. 119.
    Li M, Zhu L, Lin D (2011) Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ Sci Technol 45:1977–1983CrossRefGoogle Scholar
  120. 120.
    Zhang L et al (2010) Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. J Nanopart Res 12:1625–1636CrossRefGoogle Scholar
  121. 121.
    Sudheesh Kumar PT et al (2013) Evaluation of wound healing potential of β-chitin hydrogel/nano zinc oxide composite bandage. Pharm Res 30(2):523–537CrossRefGoogle Scholar
  122. 122.
    Hashem M, Sharaf S, Abd El-Hady MM, Hebeish A (2013) Synthesis and characterization of novel carboxymethylcellulose hydrogels and carboxymethylcellulolse-hydrogel-ZnO-nanocomposites. Carbohydr Polym 95(1):421–427CrossRefGoogle Scholar
  123. 123.
    Bhowmick S, Koul V (2016) Assessment of PVA/silver nanocomposite hydrogel patch as antimicrobial dressing scaffold: synthesis, characterization and biological evaluation. Mater Sci Eng, C 59:109–119CrossRefGoogle Scholar
  124. 124.
    García-Astrain C et al (2015) Biocompatible hydrogel nanocomposite with covalently embedded silver nanoparticles. Biomacromolecules 16(4):1301–1310CrossRefGoogle Scholar
  125. 125.
    Manjula B, Varaprasad K, Sadiku R, Ramam K, Reddy GVS, Raju KM (2014) Development of microbial resistant thermosensitive Ag nanocomposite (gelatin) hydrogels via green process. J Biomed Mater Res - Part A 102(4):928–934CrossRefGoogle Scholar
  126. 126.
    Zendehdel M, Zendehnam A, Hoseini F, Azarkish M (2015) Investigation of removal of chemical oxygen demand (COD) wastewater and antibacterial activity of nanosilver incorporated in poly (acrylamide-co-acrylic acid)/NaY zeolite nanocomposite. Polym Bull 72(6):1281–1300CrossRefGoogle Scholar
  127. 127.
    Devaki SJ, Narayanan RK, Sarojam S (2014) Electrically conducting silver nanoparticle-polyacrylic acid hydrogel by in situ reduction and polymerization approach. Mater Lett 116:135–138CrossRefGoogle Scholar
  128. 128.
    Endo T, Ikeda R, Yanagida Y, Hatsuzawa T (2008) Stimuli-responsive hydrogel-silver nanoparticles composite for development of localized surface plasmon resonance-based optical biosensor. Anal Chim Acta 611(2):205–211CrossRefGoogle Scholar
  129. 129.
    Zheng Y, Wang A (2012) Ag nanoparticle-entrapped hydrogel as promising material for catalytic reduction of organic dyes. J Mater Chem 22(32):16552CrossRefGoogle Scholar
  130. 130.
    Skardal A, Zhang J, McCoard L, Oottamasathien S, Prestwich GD (2010) Dynamically crosslinked gold nanoparticle-hyaluronan hydrogels. Adv Mater 22(42):4736–4740CrossRefGoogle Scholar
  131. 131.
    Dong D et al (2016) In Situ ‘clickable’ Zwitterionic Starch-Based Hydrogel for 3D cell encapsulation. ACS Appl Mater Interfaces 8(7):4442–4455CrossRefGoogle Scholar
  132. 132.
    Zhu H, Yao X (2013) Synthesis and characterization of poly(Acrylamide-co-2-Acrylamido-2-Methylpropane Sulfonic Acid)/kaolin superabsorbent composite. J Macromol Sci Part A 50(2):175–184CrossRefGoogle Scholar
  133. 133.
    Pourjavadi A, Ayyari M, Amini-Fazl MS (2008) Taguchi optimized synthesis of collagen-g-poly(acrylic acid)/kaolin composite superabsorbent hydrogel. Eur Polym J 44(4):1209–1216CrossRefGoogle Scholar
  134. 134.
    Liang R, Liu M, Wu L (2007) Controlled release NPK compound fertilizer with the function of water retention. React Funct Polym 67(9):769–779CrossRefGoogle Scholar
  135. 135.
    Lee WF, Chen YC (2005) Preparation of reactive mineral powders used for poly(sodium acrylate) composite superabsorbents. J Appl Polym Sci 97(3):855–861CrossRefGoogle Scholar
  136. 136.
    Lee WF, Chen YC (2005) Effect of intercalated reactive mica on water absorbency for poly(sodium acrylate) composite superabsorbents. Eur Polym J 41(7):1605–1612CrossRefGoogle Scholar
  137. 137.
    Zhang J, Chen H, Wang A (2005) Study on superabsorbent composite. III. Swelling behaviors of polyacrylamide/attapulgite composite based on acidified attapulgite and organo-attapulgite. Eur Polym J 41:2434–2442CrossRefGoogle Scholar
  138. 138.
    Li P, Zhang J, Wang A (2007) A NovelN-Succinylchitosan-graft-Polyacrylamide/Attapulgite composite hydrogel prepared through inverse suspension polymerization. Macromol Mater Eng 292(8):962–969CrossRefGoogle Scholar
  139. 139.
    Li A, Wang A, Chen J (2004) Studies on Poly(acrylic acid)/Attapulgite superabsorbent composite. I. Synthesis and characterization. J Appl Polym 92:1596–1603CrossRefGoogle Scholar
  140. 140.
    Ferfera-Harrar H, Aiouaz N, Dairi N, Hadj-Hamou AS (2014) Preparation of chitosan-g-poly(acrylamide)/montmorillonite superabsorbent polymer composites: studies on swelling, thermal, and antibacterial properties. J Appl Polym Sci 131(1):1–14CrossRefGoogle Scholar
  141. 141.
    Kabir K, Mirzadeh H, Zohuriaan-Mehr MJ, Daliri M (2009) Chitosan-modified nanoclay-poly(AMPS) nanocomposite hydrogels with improved gel strength. Polym Int 58:1252–1259CrossRefGoogle Scholar
  142. 142.
    Li L, Liu PS, Zhou NL, Zhang J, Wei SH, Shen J (2006) Synthesis and properties of a poly(acrylic acid)/montmorillonite superabsorbent nanocomposite. J Appl Polym Sci 102(6):5725–5730CrossRefGoogle Scholar
  143. 143.
    Islam MS, Rahaman MS, Yeum JH (2015) Electrospun novel super-absorbent based on polysaccharide-polyvinyl alcohol-montmorillonite clay nanocomposites. Carbohydr Polym 115:69–77CrossRefGoogle Scholar
  144. 144.
    Sarkar DJ, Singh A, Mandal P, Kumar A, Parmar BS (2015) Synthesis and characterization of poly (CMC-g-cl-PAam/Zeolite) superabsorbent composites for controlled delivery of zinc micronutrient: swelling and release behavior. Polym Plast Technol Eng 54(4):357–367CrossRefGoogle Scholar
  145. 145.
    Hwang SY, Yoon WJ, Yun SH, Yoo ES, Kim TH, Im SS (2013) Fabrication of superabsorbent ultrathin nanofibers using mesoporous materials for antimicrobial drug-delivery applications. Macromol Res 21(11):1281–1288CrossRefGoogle Scholar
  146. 146.
    Zhang J, Yuan K, Wang YP, Gu SJ, Zhang ST (2007) Preparation and properties of polyacrylate/bentonite superabsorbent hybrid via intercalated polymerization. Mater Lett 61(2):316–320CrossRefGoogle Scholar
  147. 147.
    Zhang Y, Fan L, Zhao P, Zhang L, Chen H (2008) Preparation of nanocomposite superabsorbents based on hydrotalcite and poly(acrylic-co-acrylamide) by inverse suspension polymerization. Compos Interfaces 15(7–9):747–757CrossRefGoogle Scholar
  148. 148.
    Wang Q et al (2010) High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463(7279):339–343CrossRefGoogle Scholar
  149. 149.
    Haraguchi K, Ning J, Li G (2015) Swelling/deswelling behavior of zwitterionic nanocomposite gels consisting of sulfobetaine polymer–clay networks. Eur Polym J 68:630–640CrossRefGoogle Scholar
  150. 150.
    Hong S et al (2015) 3D Printing: 3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures. Adv Mater 27(27):4034–4040CrossRefGoogle Scholar
  151. 151.
    Shi F-K, Wang X-P, Guo R-H, Zhong M, Xie X-M (2015) Highly stretchable and super tough nanocomposite physical hydrogels facilitated by the coupling of intermolecular hydrogen bonds and analogous chemical crosslinking of nanoparticles. J Mater Chem B 3(7):1187–1192CrossRefGoogle Scholar
  152. 152.
    Ahmed NB et al (2017) The physics and chemistry of silica-in-silicates nanocomposite hydrogels and their phycocompatibility. J Mater Chem B 5(16):2931–2940CrossRefGoogle Scholar
  153. 153.
    Deubel F, Steenackers M, Garrido JA, Stutzmann M, Jordan R (2013) Semiconductor/polymer nanocomposites of acrylates and nanocrystalline silicon by laser-induced thermal polymerization. Macromol Mater Eng 298(11):1160–1165CrossRefGoogle Scholar
  154. 154.
    Sayyar S, Gambhir S, Chung J, Officer DL, Wallace GG (2017) 3D printable conducting hydrogels containing chemically converted graphene. Nanoscale 9(5):2038–2050CrossRefGoogle Scholar
  155. 155.
    Cong H, Wang P, Yu S (2013) Stretchable and self-healing graphene oxide-polymer composite hydrogels: a dual-network design. Chem Mater 25:3357–3362CrossRefGoogle Scholar
  156. 156.
    Shah K, Vasileva D, Karadaghy A, Zustiak SP (2015) Development and characterization of polyethylene glycol—carbon nanotube hydrogel. J Mater Chem B 3:7950–7962CrossRefGoogle Scholar
  157. 157.
    Servant A, Methven L, Williams RP, Kostarelos K (2013) Electroresponsive polymer-carbon nanotube hydrogel hybrids for pulsatile drug delivery in vivo. Adv Healthc Mater 2(6):806–811CrossRefGoogle Scholar
  158. 158.
    Chen Z et al (2014) A three-dimensionally interconnected carbon nanotube-conducting polymer hydrogel network for high-performance flexible battery electrodes. Adv Energy Mater 4(12):1–10CrossRefGoogle Scholar
  159. 159.
    Ghadban A et al (2016) Bioinspired pH and magnetic responsive catechol-functionalized chitosan hydrogels with tunable elastic properties. Chem Commun 52(4):697–700CrossRefGoogle Scholar
  160. 160.
    Haider H et al (2015) Exceptionally tough and notch-insensitive magnetic hydrogels. Soft Matter 11(42):8253–8261CrossRefGoogle Scholar
  161. 161.
    Guan Y, Chen J, Qi X, Chen G, Peng F, Sun R (2015) Fabrication of Biopolymer Hydrogel Containing Ag Nanoparticles for Antibacterial Property. Ind Eng Chem Res 54(30):7393–7400CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Adhesive and Resin DepartmentIran Polymer and Petrochemical Institute (IPPI)TehranIran
  2. 2.Agricultural and Biosystems Engineering DepartmentSouth Dakota State UniversityBrookingsUSA

Personalised recommendations