Functionalized Carbon Nanomaterial for Artificial Bone Replacement as Filler Material

  • Fahad Saleem Ahmed Khan
  • N. M. MubarakEmail author
  • Mohammad Khalid
  • Ezzat Chan Abdullah


Recently, significant advancement has achieved in the field of bone tissue engineering for the preparation of artificial bone in order to treat defects or bone loss. Biomaterials mainly used to construct devices that are associated with the biological system to co-exist for long-lasting use with limited chance of failures. Most well-known biomaterials used for bone implants include metals, ceramics, and polymers. At present carbon nanomaterials, particularly carbon nanotubes are promising biomaterials for artificial bone due to their remarkable mechanical, electrical and thermal strength. However, in biomedical applications, carbon nanotubes are restricted to use alone due to issues like toxicity, abacas sheets formation and aggregation. Functionalization techniques help to avoid such issues. Functionalization techniques are categorized into covalent and non-covalent approaches. Covalent approach primarily focuses on tailoring the sidewalls to proceed with the modification, whereas non-covalent are constrained to alter the structure. Furthermore, CNTs are among remarkable biomaterials, and immense successful studies have been conducted to analyse the effects of CNTs with/without polymers in both vivo and in vitro experiments. The purpose of this chapter is to use functionalized carbon nanomaterial, mainly CNTs as filler material for artificial bone replacement. Therefore, this chapter reviewed the bones structure and mechanics, artificial bone history, carbon nanotubes synthesis and functionalization techniques.


Artificial bone replacements Bones structure Carbon nanomaterials Carbon nanotubes Filler materials Functionalization approaches 


  1. 1.
    Bawa R, Audette GF, Rubinstein I (2016) Handbook of clinical nanomedicine: nanoparticles, imaging, therapy, and clinical applications. CRC Press, Boca RatonCrossRefGoogle Scholar
  2. 2.
    Adlakha-Hutcheon G, Khaydarov R, Korenstein R, Varma R, Vaseashta A, Stamm H et al (2009) Nanomaterials, nanotechnology. Nanomaterials: Risks and Benefits. Springer, Berlin, pp 195–207CrossRefGoogle Scholar
  3. 3.
    Schaefer H-E (2010) Nanoscience: the science of the small in physics, engineering, chemistry, biology and medicine. Springer, Berlin Heidelberg, pp 615–735CrossRefGoogle Scholar
  4. 4.
    Yang Y, Yang X, Yang Y, Yuan Q (2018) Aptamer-functionalized carbon nanomaterials electrochemical sensors for detecting cancer relevant biomolecules. Carbon 129:380–395CrossRefGoogle Scholar
  5. 5.
    Liu Y, Dong X, Chen P (2012) Biological and chemical sensors based on graphene materials. Chem Soc Rev 41(6):2283–2307CrossRefGoogle Scholar
  6. 6.
    Trung TQ, Lee NE (2016) Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv Mater 28(22):4338–4372CrossRefGoogle Scholar
  7. 7.
    Yang W, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F (2010) Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed 49(12):2114–2138CrossRefGoogle Scholar
  8. 8.
    Weiss NO, Zhou H, Liao L, Liu Y, Jiang S, Huang Y et al (2012) Graphene: an emerging electronic material. Adv Mater 24(43):5782–5825CrossRefGoogle Scholar
  9. 9.
    Backes C (2012) Introduction: noncovalent functionalization of carbon nanotubes: fundamental aspects of dispersion and separation in water. Springer, Berlin Heidelberg, pp 1–37CrossRefGoogle Scholar
  10. 10.
    Zamolo VA, Vazquez E, Prato M (2013) Carbon nanotubes: synthesis, structure, functionalization, and characterization. In: Siegel JS, Wu Y-T (eds) Polyarenes II. 350, pp 65–109, Springer, ChamGoogle Scholar
  11. 11.
    Yadav Y, Kunduru V, Prasad S (2008) Carbon nanotubes: synthesis and characterization. In: Morris JE (ed) Nanopackaging: nanotechnologies and electronics packaging. Springer US, Boston, MA, pp 325–344CrossRefGoogle Scholar
  12. 12.
    Rezakazemi M, Amooghin AE, Montazer-Rahmati MM, Ismail AF, Matsuura T (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39(5):817–861CrossRefGoogle Scholar
  13. 13.
    Kong J, Zhou C, Morpurgo A, Soh HT, Quate CF, Marcus C et al (1999) Synthesis, integration, and electrical properties of individual single-walled carbon nanotubes. Appl Phys A 69(3):305–308CrossRefGoogle Scholar
  14. 14.
    Sun H, She P, Lu G, Xu K, Zhang W, Liu Z (2014) Recent advances in the development of functionalized carbon nanotubes: a versatile vector for drug delivery. J Mater Sci 49(20):6845–6854CrossRefGoogle Scholar
  15. 15.
    Liu Y, Zhao Y, Sun B, Chen C (2012) Understanding the toxicity of carbon nanotubes. Acc Chem Res 46(3):702–713CrossRefGoogle Scholar
  16. 16.
    Schafer FQ, Qian SY, Buettner GR (2000) Iron and free radical oxidations in cell membranes. Cellular and molecular biology (Noisy-le-Grand, France) 46(3):657Google Scholar
  17. 17.
    Basiuk EV, Basiuk VA (2015) Solvent-free functionalization of carbon nanomaterials. In: Basiuk VA, Basiuk EV (eds) Green processes for nanotechnology: from inorganic to bioinspired nanomaterials. Springer, Cham, pp 163–205Google Scholar
  18. 18.
    Krishna V, Stevens N, Koopman B, Moudgil B (2010) Optical heating and rapid transformation of functionalized fullerenes. Nat Nanotechnol 5(5):330CrossRefGoogle Scholar
  19. 19.
    Bai RG, Ninan N, Muthoosamy K, Manickam S (2017) Graphene: a versatile platform for nanotheranostics and tissue engineering. Progress in Materials ScienceGoogle Scholar
  20. 20.
    Egli RJ, Luginbuehl R (2012) Tissue engineering-nanomaterials in the musculoskeletal system. Swiss Med Wkly 142:w13647Google Scholar
  21. 21.
    Cowin SC (2001) Bone mechanics handbook. CRC Press, Boca RotonCrossRefGoogle Scholar
  22. 22.
    Currey J (2002) Bones: structure and mechanics. Princeton University Press, Princeton, NJGoogle Scholar
  23. 23.
    Behari J (1991) Solid state bone behaviour. Prog Biophys Mol Biol 56(1):1–41CrossRefGoogle Scholar
  24. 24.
    Rouhi G (2006) Theoretical aspects of bone remodeling and resorption processes. Ph.D. Thesis, University of CalgaryGoogle Scholar
  25. 25.
    Bartel D, Davy D, Keaveny T (2006) Orthopaedic biomechanics mechanics and design in musculoskeletal systems. Pearson Education Inc., Upper Saddle RiverGoogle Scholar
  26. 26.
    Lakes R, Saha S (1979) Cement line motion in bone. Science 204(4392):501–503CrossRefGoogle Scholar
  27. 27.
    van der Meulen MC (2000) Mechanics in skeletal development, adaptation and disease. Philos Trans Royal Soc Lond A Math Phys Eng Sci 358(1766):565–578CrossRefGoogle Scholar
  28. 28.
    Guldberg R, Caldwell N, Guo X, Goulet R, Hollister S, Goldstein S (1997) Mechanical stimulation of tissue repair in the hydraulic bone chamber. J Bone Miner Res 12(8):1295–1302CrossRefGoogle Scholar
  29. 29.
    Burger EH, Klein-Nulend J (1999) Mechanotransduction in bone—role of the lacuno-canalicular network. FASEB J 13(9001):S101–S12CrossRefGoogle Scholar
  30. 30.
    Parfitt A (1995) Problems in the application of in vitro systems to the study of human bone remodeling. Calcif Tissue Int 56(1):S5–S7CrossRefGoogle Scholar
  31. 31.
    Standring S (2015) Gray’s anatomy e-book: the anatomical basis of clinical practice. Elsevier, AmsterdamGoogle Scholar
  32. 32.
    Patka P, Haarman HJTM, van der Elst M, Bakker FC (2000) Artificial bone. In: Wise DL, Trantolo DJ, Lewandrowski K-U, Gresser JD, Cattaneo MV, Yaszemski MJ (eds) Biomaterials engineering and devices: human applications, vol 2, Orthopedic, Dental, and Bone Graft Applications, pp 95–109. 2 Totowa, Humana Press, NJGoogle Scholar
  33. 33.
    Autograft (2001) In: Schwab M (ed) Encyclopedic reference of cancer, p 83. Springer, Berlin, HeidelbergGoogle Scholar
  34. 34.
    Isograft (2001) In: Schwab M (ed). Encyclopedic reference of cancer, p 468. Springer, Berlin, HeidelbergGoogle Scholar
  35. 35.
    Allograft (2001) In: Schwab M (ed) Encyclopedic reference of cancer, p 38. Springer, Berlin HeidelbergGoogle Scholar
  36. 36.
    Kabbashi N, Jamal Ibrahim D, Rosli NF (2011) Statistical analysis for removal of cadmium from aqueous solution at high pH. Aust J Basic Appl Sci 5(6):440–446Google Scholar
  37. 37.
    Syahrom A, Kadir MRA, Abdullah J, Öchsner A (2013) Permeability studies of artificial and natural cancellous bone structures. Med Eng Phys 35(6):792–799CrossRefGoogle Scholar
  38. 38.
    Saijo H, Kanno Y, Mori Y, Suzuki S, Ohkubo K, Chikazu D et al (2011) A novel method for designing and fabricating custom-made artificial bones. Int J Oral Maxillofac Surg 40(9):955–960CrossRefGoogle Scholar
  39. 39.
    Kamachimudali U, Sridhar T, Raj B (2003) Corrosion of bio implants. Sadhana 28(3–4):601–637CrossRefGoogle Scholar
  40. 40.
    Trebše R (2012) Biomaterials in artificial joint replacements. Infected total joint arthroplasty. Springer, Berlin, pp 13–21CrossRefGoogle Scholar
  41. 41.
    Virtanen S, Milošev I, Gomez-Barrena E, Trebše R, Salo J, Konttinen Y (2008) Special modes of corrosion under physiological and simulated physiological conditions. Acta Biomater 4(3):468–476CrossRefGoogle Scholar
  42. 42.
    De Volder MF, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339(6119):535–539CrossRefGoogle Scholar
  43. 43.
    Grace T (2003) An introduction to carbon nanotubes. Summer, Stanford UniversityGoogle Scholar
  44. 44.
    Pénicaud A (2014) Solubilization of fullerenes, carbon nanotubes, and graphene. Making and exploiting fullerenes, graphene, and carbon nanotubes. Springer, Berlin, pp 1–35Google Scholar
  45. 45.
    Rao CK, Rao L (2017) Critical velocities in fluid-conveying single-walled carbon nanotubes embedded in an elastic foundation. J Appl Mech Tech Phys 58(4):743–752CrossRefGoogle Scholar
  46. 46.
    Yu O, Daoyong L, Weiran C, Shaohua S, Li C (2009) A temperature window for the synthesis of single-walled carbon nanotubes by catalytic chemical vapor deposition of CH 4 over Mo 2-Fe 10/MgO catalyst. Nanoscale Res Lett 4(6):574CrossRefGoogle Scholar
  47. 47.
    Qingwen L, Hao Y, Yan C, Jin Z, Zhongfan L (2002) A scalable CVD synthesis of high-purity single-walled carbon nanotubes with porous MgO as support material. J Mater Chem 12(4):1179–1183CrossRefGoogle Scholar
  48. 48.
    Ahmed W, Jackson MJ (2016) Surgical tools and medical devices. Springer, BerlinCrossRefGoogle Scholar
  49. 49.
    Radushkevich L, Lukyanovich V (1952) Carbon structure formed under thermal decomposition of carbon monoxide on iron. Zh Fiz Khim 26(1):88–95Google Scholar
  50. 50.
    Shin Y-H, Song J-W, Lee E-S, Han C-S (2007) Imaging characterization of carbon nanotube tips modified using a focused ion beam. Appl Surf Sci 253(16):6872–6877CrossRefGoogle Scholar
  51. 51.
    Vajtai R (2013) Springer handbook of nanomaterials. Springer Science & Business Media, BerlinCrossRefGoogle Scholar
  52. 52.
    Huczko A (2002) Synthesis of aligned carbon nanotubes. Appl Phys A 74(5):617–638CrossRefGoogle Scholar
  53. 53.
    Chauhan SK, Shukla A, Dutta S, Gangopadhyay S, Bharadwaj LM (2012) Carbon nanotubes for environmental protection. Springer, Environmental Chemistry for a Sustainable World, pp 83–98Google Scholar
  54. 54.
    Syrgiannis Z, Melchionna M, Prato M (2015) Covalent carbon nanotube functionalization. In: Kobayashi S, Müllen K (eds) Encyclopedia of polymeric nanomaterials. Springer, Berlin Heidelberg, pp 480–487CrossRefGoogle Scholar
  55. 55.
    Yang Y, Qiu S, Xie X, Wang X, Li RKY (2010) A facile, green, and tunable method to functionalize carbon nanotubes with water-soluble azo initiators by one-step free radical addition. Appl Surf Sci 256(10):3286–3292CrossRefGoogle Scholar
  56. 56.
    Mananghaya MR, Santos GN, Yu DN (2017) Solubility of amide functionalized single wall carbon nanotubes: a quantum mechanical study. J Mol Liq 242:1208–1214CrossRefGoogle Scholar
  57. 57.
    Giliopoulos DJ, Triantafyllidis KS, Gournis D (2013) Chemical functionalization of carbon nanotubes for dispersion in epoxy matrices. In: Paipetis A, Kostopoulos V (eds) Carbon nanotube enhanced aerospace composite materials: a new generation of multifunctional hybrid structural composites, pp 155–183. Springer: Dordrecht, NetherlandsGoogle Scholar
  58. 58.
    Erol O, Uyan I, Hatip M, Yilmaz C, Tekinay AB, Guler MO (2017) Recent advances in bioactive 1D and 2D carbon nanomaterials for biomedical applications. Nanomedicine: Nanotechnology, Biology and MedicineGoogle Scholar
  59. 59.
    Liang S, Li G, Tian R (2016) Multi-walled carbon nanotubes functionalized with a ultrahigh fraction of carboxyl and hydroxyl groups by ultrasound-assisted oxidation. J Mater Sci 51(7):3513–3524CrossRefGoogle Scholar
  60. 60.
    Battigelli A, Ménard-Moyon C, Da Ros T, Prato M, Bianco A (2013) Endowing carbon nanotubes with biological and biomedical properties by chemical modifications. Adv Drug Deliv Rev 65(15):1899–1920CrossRefGoogle Scholar
  61. 61.
    Zhao Z, Yang Z, Hu Y, Li J, Fan X (2013) Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups. Appl Surf Sci 276:476–481CrossRefGoogle Scholar
  62. 62.
    Khani H, Moradi O (2013) Influence of surface oxidation on the morphological and crystallographic structure of multi-walled carbon nanotubes via different oxidants. J Nanostruct Chem 3(1):73CrossRefGoogle Scholar
  63. 63.
    Martín O, Gutierrez HR, Maroto-Valiente A, Terrones M, Blanco T, Baselga J (2013) An efficient method for the carboxylation of few-wall carbon nanotubes with little damage to their sidewalls. Mater Chem Phys 140(2–3):499–507CrossRefGoogle Scholar
  64. 64.
    Zschoerper NP, Katzenmaier V, Vohrer U, Haupt M, Oehr C, Hirth T (2009) Analytical investigation of the composition of plasma-induced functional groups on carbon nanotube sheets. Carbon 47(9):2174–2185CrossRefGoogle Scholar
  65. 65.
    Saito T, Matsushige K, Tanaka K (2002) Chemical treatment and modification of multi-walled carbon nanotubes. Physica B 323(1–4):280–283CrossRefGoogle Scholar
  66. 66.
    Dillon AC, Gennett T, Jones KM, Alleman JL, Parilla PA, Heben MJ (1999) A simple and complete purification of single-walled carbon nanotube materials. Adv Mater 11(16):1354–1358CrossRefGoogle Scholar
  67. 67.
    Morelos-Gómez A, Tristán López F, Cruz-Silva R, Vega DÃ-az SM, Terrones M (2013) Modified carbon nanotubes. In: Vajtai R (ed) Springer Handbook of Nanomaterials, pp 189–232. Springer, Berlin HeidelbergGoogle Scholar
  68. 68.
    Hirsch A, Vostrowsky O (2005) Functionalization of carbon nanotubes. Functional molecular nanostructures. Springer, Berlin, pp 193–237CrossRefGoogle Scholar
  69. 69.
    Trusova ME, Kutonova KV, Kurtukov VV, Filimonov VD, Postnikov PS (2016) Arenediazonium salts transformations in water media: coming round to origins. Resour Efficient Technol 2(1):36–42CrossRefGoogle Scholar
  70. 70.
    Mohamed AA, Salmi Z, Dahoumane SA, Mekki A, Carbonnier B, Chehimi MM (2015) Functionalization of nanomaterials with aryldiazonium salts. Adv Coll Interface Sci 225:16–36CrossRefGoogle Scholar
  71. 71.
    Backes C, Hirsch A (2010) Noncovalent functionalization of carbon nanotubes. Wiley, Chichester, UK, pp 1–48Google Scholar
  72. 72.
    Composites C. Functionalization of CNTs 2018 (cited 11 Mar 2018). Available from:
  73. 73.
    Ferreira FV, Cividanes LDS, Brito FS, de Menezes BRC, Franceschi W, Simonetti EAN et al (2016) Functionalization of carbon nanotube and applications. Functionalizing Graphene and carbon nanotubes: A review. Springer, Cham, pp 31–61CrossRefGoogle Scholar
  74. 74.
    Bianco A, Sainz R, Li S, Dumortier H, Lacerda L, Kostarelos K et al (2008) Biomedical applications of functionalised carbon nanotubes. In: Cataldo F, Da Ros T (eds) Medicinal chemistry and pharmacological potential of fullerenes and carbon nanotubes. Springer, Dordrecht, Netherlands, pp 23–50CrossRefGoogle Scholar
  75. 75.
    Kasperski A, Weibel A, Estournès C, Laurent C, Peigney A (2014) Multi-walled carbon nanotube–Al2O3 composites: covalent or non-covalent functionalization for mechanical reinforcement. Scripta Mater 75:46–49CrossRefGoogle Scholar
  76. 76.
    Behnam B, Shier WT, Nia AH, Abnous K, Ramezani M (2013) Non-covalent functionalization of single-walled carbon nanotubes with modified polyethyleneimines for efficient gene delivery. Int J Pharm 454(1):204–215CrossRefGoogle Scholar
  77. 77.
    Sanz V, Borowiak E, Lukanov P, Galibert AM, Flahaut E, Coley HM et al (2011) Optimising DNA binding to carbon nanotubes by non-covalent methods. Carbon 49(5):1775–1781CrossRefGoogle Scholar
  78. 78.
    Jeon I-Y, Chang DW, Kumar NA, Baek J-B (2011) Functionalization of carbon nanotubes. Carbon nanotubes-Polymer nanocomposites: InTechGoogle Scholar
  79. 79.
    Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A et al (2014) Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett 9(1):393CrossRefGoogle Scholar
  80. 80.
    Pal S (2014) Biomaterials and its characterization. Design of artificial human joints & organs. Springer US, Boston, MA, pp 51–73CrossRefGoogle Scholar
  81. 81.
    Tibbetts GG (2001) Vapor-grown carbon fiber research and applications: achievements and barriers. Carbon filaments and nanotubes: common origins, differing applications?. Springer, Berlin, pp 1–9Google Scholar
  82. 82.
    Ci L, Wei J, Wei B, Xu C, Liang J, Wu D (2000) Novel carbon filaments with carbon beads grown on their surface. J Mater Sci Lett 19(1):21–22CrossRefGoogle Scholar
  83. 83.
    Ren Z, Lan Y, Wang Y (2012) Aligned carbon nanotubes: physics, concepts, fabrication and devices. Springer Science & Business Media, BerlinGoogle Scholar
  84. 84.
    Ko FK, Kuznetsov V, Flahaut E, Peigney A, Laurent C, Prinz VY, et al (2004) Formation of nanofibers and nanotubes production. Nanoeng Nanofibrous Mater. 169:1–129. Springer, BerlinGoogle Scholar
  85. 85.
    Oberlin A, Endo M, Koyama T (1976) Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32(3):335–349CrossRefGoogle Scholar
  86. 86.
    Demoncy N, Stephan O, Brun N, Colliex C, Loiseau A, Pascard H (1998) Filling carbon nanotubes with metals by the arc-discharge method: the key role of sulfur. Eur Phys J B-Condens Matter Complex Syst 4(2):147–157CrossRefGoogle Scholar
  87. 87.
    Fonseca A, Nagy J (2001) Carbon nanotubes formation in the arc discharge process: carbon filaments and nanotubes: common origins, differing applications? p 75–84. Springer, BerlinGoogle Scholar
  88. 88.
    Hu J, Bando Y, Xu F, Li Y, Zhan J, Xu J et al (2004) Growth and field-emission properties of crystalline, thin-walled carbon microtubes. Adv Mater 16(2):153–156CrossRefGoogle Scholar
  89. 89.
    Ren Z, Lan Y, Wang Y (2013) Carbon nanotubes: Aligned carbon nanotubes: physics, concepts, fabrication and devices. Springer, Berlin Heidelberg, pp 7–43Google Scholar
  90. 90.
    Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603CrossRefGoogle Scholar
  91. 91.
    Joselevich E, Dai H, Liu J, Hata K, Windle AH (2008) Carbon nanotube synthesis and organization. Carbon nanotubes. Springer, Berlin, Heidelberg, pp 101–165Google Scholar
  92. 92.
    Lyskawa J, Grondein A, Bélanger D (2010) Chemical modifications of carbon powders with aminophenyl and cyanophenyl groups and a study of their reactivity. Carbon 48(4):1271–1278CrossRefGoogle Scholar
  93. 93.
    Leinonen H, Lajunen M (2012) Direct functionalization of pristine single-walled carbon nanotubes by diazonium-based method with various five-membered S-or N-heteroaromatic amines. J Nanopart Res 14(9):1064CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Fahad Saleem Ahmed Khan
    • 1
  • N. M. Mubarak
    • 1
    Email author
  • Mohammad Khalid
    • 2
  • Ezzat Chan Abdullah
    • 3
  1. 1.Department of Chemical Engineering, Faculty of Engineering and ScienceCurtin UniversitySarawakMalaysia
  2. 2.Graphene & Advanced 2D Materials Research Group (GAMRG), School of Science and TechnologySunway UniversitySubang JayaMalaysia
  3. 3.Department of Chemical Process EngineeringMalaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia (UTM)Kuala LumpurMalaysia

Personalised recommendations