Advertisement

Processing Aspects and Biomedical and Environmental Applications of Sustainable Nanocomposites Containing Nanofillers

  • Mohd Azmuddin AbdullahEmail author
  • Muhammad Shahid NazirEmail author
  • Zaman Tahir
  • Yasir Abbas
  • Majid Niaz Akhtar
  • Muhammad Rafi Raza
  • Hanaa Ali Hussein
Chapter

Abstract

The development of sustainable products based on eco-composites using natural resources, agro-wastes or cellulosic fibers are among effective strategies for waste recycling, environmental remediation, and conversion into value-added products. Composite materials based on polymer have increasingly replaced the metals and ceramics-based composite due to the low cost and ease of processability, with wide-ranging tunable properties and amenability to changes for specific applications, through the use of additives in the form of fillers, lamina, fibers, flakes, and particles. Nanofillers incorporated within the matrix of nanocomposites dramatically alter the chemical, physical and mechanical properties. These are dependant upon factors such as the processing techniques, the interaction between the nanofillers and the matrix, and the distribution and dispersion of the nano-fillers. In this review article, the processing aspects of the composite materials based on cellulose, chitosan, and magnetic nanocomposites are discussed. The applications in drug delivery, tissue engineering, biosensor, electrically conductive polymer and insulators, and the green catalysis and environmental remediation are highlighted.

Keywords

Polymer composite Nano-fillers Cellulose Chitosan Magnetic nanoparticle Injection moulding Drug delivery Biosensor Electrically-conductive polymer Green catalysis Environmental remediation 

References

  1. 1.
    Liu Q, Paavola J (2016) Lightweight design of composite laminated structures with frequency constraint. Compos Struct 156:356–360CrossRefGoogle Scholar
  2. 2.
    Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442CrossRefGoogle Scholar
  3. 3.
    Al-Oqla FM, Sapuan SM, Anwer T, Jawaid M, Hoque ME (2015) Natural fiber reinforced conductive polymer composites as functional materials: a review. Synth Met 206:42–54CrossRefGoogle Scholar
  4. 4.
    Dhand V, Mittal G, Rhee KY, Park SJ, Hui D (2015) A short review on basalt fiber reinforced polymer composites. Compos B Eng 73:166–180CrossRefGoogle Scholar
  5. 5.
    Mittal G, Dhand V, Rhee KY, Park SJ, Lee WR (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25CrossRefGoogle Scholar
  6. 6.
    Hung PY, Lau KT, Cheng LK, Leng J, Hui D (2018) Impact response of hybrid carbon/glass fibre reinforced polymer composites designed for engineering applications. Compos B Eng 133:86–90CrossRefGoogle Scholar
  7. 7.
    Pillai SK, Ray SS (2011) Epoxy-based carbon nanotubes reinforced composites. In: Advances in nanocomposites-synthesis, characterization and industrial applications. InTechGoogle Scholar
  8. 8.
    Auvergne R, Caillol S, David G, Boutevin B, Pascault JP (2013) Biobased thermosetting epoxy: present and future. Chem Rev 114(2):1082–1115CrossRefGoogle Scholar
  9. 9.
    Maffini MV, Rubin BS, Sonnenschein C, Soto AM (2006) Endocrine disruptors and reproductive health: the case of bisphenol-A. Mol Cell Endocrinol 254:179–186CrossRefGoogle Scholar
  10. 10.
    Poletto M, Ornaghi Júnior HL, Visakh PM, Arao Y (2016) Composites and nanocomposites based on renewable and sustainable materials. Int J Polym Sci 2016Google Scholar
  11. 11.
    Böer P, Holliday L, Kang THK (2014) Interaction of environmental factors on fiber-reinforced polymer composites and their inspection and maintenance: a review. Constr Build Mater 50:209–218CrossRefGoogle Scholar
  12. 12.
    Abdullah MA, Nazir MS, Ajab H, Daneshfozoun S, Almustapha S (2017) Advances in eco-friendly pre-treatment methods and utilization of agro-based lignocelluloses. Ind Biotechnol: Sustain Prod Biores Utilization 371–419Google Scholar
  13. 13.
    Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge National Lab, Oak RidgeGoogle Scholar
  14. 14.
    Yuan Z, Cheng S, Leitch M, Xu CC (2010) Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol. Biores Technol 101(23):9308–9313CrossRefGoogle Scholar
  15. 15.
    Jacqueline I, Kroschwitz A (2001) Encyclopedia of chemical technology, vol 20. Wiley- Interscience, New YorkGoogle Scholar
  16. 16.
    Abdullah MA, Nazir MS, Raza MR, Wahjoedi BA, Yussof AW (2016) Autoclave and ultra-sonication treatments of oil palm empty fruit bunch fibers for cellulose extraction and its polypropylene composite properties. J Clean Prod 126:686–697CrossRefGoogle Scholar
  17. 17.
    ISO/TS 80004-2:(2015) Nanotechnologies—vocabulary—part 2, no. April 2015Google Scholar
  18. 18.
    Lamouroux E, Fort Y (2016) An overview of nanocomposite nanofillers and their functionalization. In: Spectroscopy of polymer nanocomposites, pp 15–64CrossRefGoogle Scholar
  19. 19.
    Schrittwieser S, Ludwig F, Dieckhoff J, Tschoepe A, Guenther A, Richter M, Schotter J et al (2014) Direct protein detection in the sample solution by monitoring rotational dynamics of nickel nanorods. Small 10(2):407–411CrossRefGoogle Scholar
  20. 20.
    Roeder L, Bender P, Tschöpe A, Birringer R, Schmidt AM (2012) Shear modulus determination in model hydrogels by means of elongated magnetic nanoprobes. J Polym Sci Part B: Polym Phys 50(24):1772–1781CrossRefGoogle Scholar
  21. 21.
    Okada A, Usuki A (2006) Twenty years of polymer-clay nanocomposites. Macromol Mater Eng 291(12):1449–1476CrossRefGoogle Scholar
  22. 22.
    Verdejo R, Bernal MM, Romasanta LJ, Tapiador FJ, Lopez-Manchado MA (2011) Reactive nanocomposite foams. Cell Polym 30(2):45CrossRefGoogle Scholar
  23. 23.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Firsov AA et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRefGoogle Scholar
  24. 24.
    Kotov NA (2006) Materials science: carbon sheet solutions. Nature 442(7100):254CrossRefGoogle Scholar
  25. 25.
    George TF, Jelski D, Letfullin RL, Zhang GP (2011) Computational studies of new materials IIGoogle Scholar
  26. 26.
    Popov VN (2004) Carbon nanotubes: properties and application. Mater Sci Eng R: Rep 43(3):61–102CrossRefGoogle Scholar
  27. 27.
    Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2(4):728–765CrossRefGoogle Scholar
  28. 28.
    García NL, Ribba L, Dufresne A, Aranguren M, Goyanes S (2011) Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals. Carbohyd Polym 84(1):203–210CrossRefGoogle Scholar
  29. 29.
    Famá LM, Pettarin V, Goyanes SN, Bernal CR (2011) Starch/multi-walled carbon nanotubes composites with improved mechanical properties. Carbohyd Polym 83(3):1226–1231CrossRefGoogle Scholar
  30. 30.
    Famá L, Rojo PG, Bernal C, Goyanes S (2012) Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus. Carbohyd Polym 87(3):1989–1993CrossRefGoogle Scholar
  31. 31.
    García NL, Ribba L, Dufresne A, Aranguren MI, Goyanes S (2009) Physico-mechanical properties of biodegradable starch nanocomposites. Macromol Mater Eng 294(3):169–177CrossRefGoogle Scholar
  32. 32.
    Angellier H, Molina-Boisseau S, Dole P, Dufresne A (2006) Thermoplastic starch—waxy maize starch nanocrystals nanocomposites. Biomacromolecules 7(2):531–539CrossRefGoogle Scholar
  33. 33.
    Cao X, Chen Y, Chang PR, Huneault MA (2007) Preparation and properties of plasticized starch/multiwalled carbon nanotubes composites. J Appl Polym Sci 106(2):1431–1437CrossRefGoogle Scholar
  34. 34.
    Ma X, Chang PR, Yu J, Lu P (2008) Characterizations of glycerol plasticized-starch (GPS)/carbon black (CB) membranes prepared by melt extrusion and microwave radiation. Carbohyd Polym 74(4):895–900CrossRefGoogle Scholar
  35. 35.
    Qiao R, Brinson LC (2009) Simulation of interphase percolation and gradients in polymer nanocomposites. Compos Sci Technol 69(3–4):491–499CrossRefGoogle Scholar
  36. 36.
    Kilbride BE, Coleman JN, Fraysse J, Fournet P, Cadek M, Drury A, Blau WJ et al (2002) Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. J Appl Phys 92(7):4024–4030CrossRefGoogle Scholar
  37. 37.
    Sandler J, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44(19):5893–5899CrossRefGoogle Scholar
  38. 38.
    Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80(15):2767–2769CrossRefGoogle Scholar
  39. 39.
    Wei C, Srivastava D, Cho K (2002) Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites. Nano Lett 2(6):647–650CrossRefGoogle Scholar
  40. 40.
    Yu L (2009) Biodegradable polymer blends and composites from renewable resources. WileyGoogle Scholar
  41. 41.
    Malkapuram R, Kumar V, Negi YS (2009) Recent development in natural fiber reinforced polypropylene composites. J Reinf Plast Compos 28(10):1169–1189CrossRefGoogle Scholar
  42. 42.
  43. 43.
    Stanimirović Z, Stanimirović I (2012) Ceramic injection molding. In: Some critical issues for injection molding. InTechGoogle Scholar
  44. 44.
    Rak ZS (1999) New trends in powder injection moulding. Powder Metall Met Ceram 38(3–4):126–132CrossRefGoogle Scholar
  45. 45.
    Åkesson D, Skrifvars M, Seppälä J, Turunen M (2011) Thermoset lactic acid-based resin as a matrix for flax fibers. J Appl Polym Sci 119(5):3004–3009CrossRefGoogle Scholar
  46. 46.
    Bax B, Müssig J (2008) Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos Sci Technol 68(7–8):1601–1607CrossRefGoogle Scholar
  47. 47.
    Zhu J, Zhu H, Njuguna J, Abhyankar H (2013) Recent development of flax fibres and their reinforced composites based on different polymeric matrices. Materials 6(11):5171–5198CrossRefGoogle Scholar
  48. 48.
    (SHI) Sumitomo (2017) Demag plastics machinery GmbH. https://www.sumitomo-shi-demag.eu/processes/biopolymers.html. Accessed 17 Apr 2018
  49. 49.
    Kalia S, Dufresne A, Cherian BM, Kaith BS, Avérous L, Njuguna J, Nassiopoulos E (2011) Cellulose-based bio-and nanocomposites: a review. Int J Polym Sci, 2011Google Scholar
  50. 50.
    Crawford RL (1982) Lignin biodegradation and transformation. Wiley, p 118Google Scholar
  51. 51.
    Bledzki AK, Reihmane S, Gassan J (1996) Properties and modification methods for vegetable fibers for natural fiber composites. J Appl Polym Sci 59(8):1329–1336CrossRefGoogle Scholar
  52. 52.
    Bismarck A, Mishra S, Lampke T (2005) Plant fibers as reinforcement for green composites. Nat Fibers Biopolym Biocompos 10:9780203508206Google Scholar
  53. 53.
    Satyanarayana KG, Sukumaran K, Mukherjee PS, Pavithran C, Pillai SGK (1990) Natural fibre-polymer composites. Cement Concr Compos 12(2):117–136CrossRefGoogle Scholar
  54. 54.
    Perasso R, Baroin A, Qu LH, Bachellerie JP, Adoutte A (1989) Origin of the algae. Nature 339(6220):142CrossRefGoogle Scholar
  55. 55.
    Wertz JL, Mercier JP, Bédué O (2010) Cellulose science and technology. CRC PressGoogle Scholar
  56. 56.
    Lejeune A, Deprez T (2010) Cellulose: structure and properties, derivatives and industrial uses. Nova Science PublishersGoogle Scholar
  57. 57.
    Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Wu G et al (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8(4):325–327CrossRefGoogle Scholar
  58. 58.
    Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393CrossRefGoogle Scholar
  59. 59.
    Dalväg H, Klason C, Strömvall HE (1985) The efficiency of cellulosic fillers in common thermoplastics. Part II. Filling with processing aids and coupling agents. Int J Polym Mater 11(1):9–38CrossRefGoogle Scholar
  60. 60.
    Maldas D, Kokta BV, Raj RG, Daneault C (1988) Improvement of the mechanical properties of sawdust wood fibre—polystyrene composites by chemical treatment. Polymer 29(7):1255–1265CrossRefGoogle Scholar
  61. 61.
    Zadorecki P, Michell AJ (1989) Future prospects for wood cellulose as reinforcement in organic polymer composites. Polym Compos 10(2):69–77CrossRefGoogle Scholar
  62. 62.
    Nazir MS, Wahjoedi BA, Yussof AW, Abdullah MA (2013) Eco-friendly extraction and characterization of cellulose from oil palm empty fruit bunches. BioResources 8(2):2161–2172CrossRefGoogle Scholar
  63. 63.
    Haafiz MM, Eichhorn SJ, Hassan A, Jawaid M (2013) Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohyd Polym 93(2):628–634CrossRefGoogle Scholar
  64. 64.
    Visakh PM, Thomas S (2010) Preparation of bionanomaterials and their polymer nanocomposites from waste and biomass. Waste Biomass Valorization 1(1):121–134CrossRefGoogle Scholar
  65. 65.
    Bras J, Hassan ML, Bruzesse C, Hassan EA, El-Wakil NA, Dufresne A (2010) Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Ind Crops Prod 32(3):627–633CrossRefGoogle Scholar
  66. 66.
    Brito BS, Pereira FV, Putaux JL, Jean B (2012) Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose 19(5):1527–1536CrossRefGoogle Scholar
  67. 67.
    Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2):171CrossRefGoogle Scholar
  68. 68.
    Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626CrossRefGoogle Scholar
  69. 69.
    Filson PB, Dawson-Andoh BE (2009) Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials. Biores Technol 100(7):2259–2264CrossRefGoogle Scholar
  70. 70.
    Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly (lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 67(11–12):2535–2544CrossRefGoogle Scholar
  71. 71.
    Haafiz MM, Hassan A, Zakaria Z, Inuwa IM (2014) Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Carbohyd Polym 103:119–125CrossRefGoogle Scholar
  72. 72.
    Liu D, Zhong T, Chang PR, Li K, Wu Q (2010) Starch composites reinforced by bamboo cellulosic crystals. Biores Technol 101(7):2529–2536CrossRefGoogle Scholar
  73. 73.
    Pandey JK, Chu WS, Kim CS, Lee CS, Ahn SH (2009) Bio-nano reinforcement of environmentally degradable polymer matrix by cellulose whiskers from grass. Compos B Eng 40(7):676–680CrossRefGoogle Scholar
  74. 74.
    Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66(15):2776–2784CrossRefGoogle Scholar
  75. 75.
    Pereda M, Amica G, Rácz I, Marcovich NE (2011) Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. J Food Eng 103(1):76–83CrossRefGoogle Scholar
  76. 76.
    Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohyd Polym 86(3):1291–1299CrossRefGoogle Scholar
  77. 77.
    Valentini L, Bon SB, Cardinali M, Fortunati E, Kenny JM (2014) Cellulose nanocrystals thin films as gate dielectric for flexible organic field-effect transistors. Mater Lett 126:55–58CrossRefGoogle Scholar
  78. 78.
    Tang L, Huang B, Lu Q, Wang S, Ou W, Lin W, Chen X (2013) Ultrasonication-assisted manufacture of cellulose nanocrystals esterified with acetic acid. Biores Technol 127:100–105CrossRefGoogle Scholar
  79. 79.
    Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48(12):3486–3493CrossRefGoogle Scholar
  80. 80.
    Liu H, Liu D, Yao F, Wu Q (2010) Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Biores Technol 101(14):5685–5692CrossRefGoogle Scholar
  81. 81.
    Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17(2):153–155CrossRefGoogle Scholar
  82. 82.
    Ljungberg N, Cavaillé JY, Heux L (2006) Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer 47(18):6285–6292CrossRefGoogle Scholar
  83. 83.
    Bornet A, Teissedre PL (2008) Chitosan, chitin-glucan and chitin effects on minerals (iron, lead, cadmium) and organic (ochratoxin A) contaminants in wines. Eur Food Res Technol 226(4):681–689CrossRefGoogle Scholar
  84. 84.
    Ali A, Ahmed S (2017) A review on chitosan and its nanocomposites in drug delivery. Int J Biol MacromolGoogle Scholar
  85. 85.
    Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632CrossRefGoogle Scholar
  86. 86.
    Gardner KH, Blackwell J (1975) Refinement of the structure of β-chitin. Biopolymers 14(8):1581–1595CrossRefGoogle Scholar
  87. 87.
    Minke RAM, Blackwell J (1978) The structure of α-chitin. J Mol Biol 120(2):167–181CrossRefGoogle Scholar
  88. 88.
    Saito Y, Okano T, Chanzy H, Sugiyama J (1995) Structural study of α chitin from the grasping spines of the arrow worm (Sagitta spp.). J Struct Biol 114(3):218–228CrossRefGoogle Scholar
  89. 89.
    Chanzy H (1998) Chitin crystals. Jacques Andre, LyonGoogle Scholar
  90. 90.
    Chrétiennot-Dinet MJ, Giraud-Guille MM, Vaulot D, Putaux JL, Saito Y, Chanzy H (1997) The chitinous nature of filaments ejected by Phaeocystis (Prymnesiophyceae). J Phycol 33(4):666–672CrossRefGoogle Scholar
  91. 91.
    Blackwell J (1969) Structure of β-chitin or parallel chain systems of poly-β-(1→4)-N-acetyl-d-glucosamine. Biopolymers 7(3):281–298CrossRefGoogle Scholar
  92. 92.
    Gaill F, Persson J, Sugiyama J, Vuong R, Chanzy H (1992) The chitin system in the tubes of deep sea hydrothermal vent worms. J Struct Biol 109(2):116–128CrossRefGoogle Scholar
  93. 93.
    Fernandes SC, Freire CS, Silvestre AJ, Neto CP, Gandini A, Berglund LA, Salmén L (2010) Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohyd Polym 81(2):394–401CrossRefGoogle Scholar
  94. 94.
    Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang M (2005) Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26(31):6176–6184CrossRefGoogle Scholar
  95. 95.
    Geng X, Kwon OH, Jang J (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26(27):5427–5432CrossRefGoogle Scholar
  96. 96.
    Mengistu Lemma S, Bossard F, Rinaudo M (2016) Preparation of pure and stable chitosan nanofibers by electrospinning in the presence of poly (ethylene oxide). Int J Mol Sci 17(11):1790CrossRefGoogle Scholar
  97. 97.
    Ojha SS, Stevens DR, Hoffman TJ, Stano K, Klossner R, Scott MC, Gorga RE et al (2008) Fabrication and characterization of electrospun chitosan nanofibers formed via templating with polyethylene oxide. Biomacromolecules 9(9):2523–2529CrossRefGoogle Scholar
  98. 98.
    Homayoni H, Ravandi SAH, Valizadeh M (2009) Electrospinning of chitosan nanofibers: processing optimization. Carbohyd Polym 77(3):656–661CrossRefGoogle Scholar
  99. 99.
    Pillai SK, Ray SS (2012) Chitosan-based nanocomposites. Nat Polym 2:33–68CrossRefGoogle Scholar
  100. 100.
    Mai YW, Yu ZZ (2006) Polymer nanocomposites. Woodhead publishingGoogle Scholar
  101. 101.
    Behrens S, Appel I (2016) Magnetic nanocomposites. Curr Opin Biotechnol 39:89–96CrossRefGoogle Scholar
  102. 102.
    Zhu J, Wei S, Li Y, Sun L, Haldolaarachchige N, Young DP, Guo Z et al (2011) Surfactant-free synthesized magnetic polypropylene nanocomposites: rheological, electrical, magnetic, and thermal properties. Macromolecules 44(11):4382–4391CrossRefGoogle Scholar
  103. 103.
    Smith TW, Wychick D (1980) Colloidal iron dispersions prepared via the polymer-catalyzed decomposition of iron pentacarbonyl. J Phys Chem 84(12):1621–1629CrossRefGoogle Scholar
  104. 104.
    Daneshfozoun S, Abdullah MA, Abdullah B (2017) Preparation and characterization of magnetic biosorbent based on oil palm empty fruit bunch fibers, cellulose and Ceiba pentandra for heavy metal ions removal. Ind Crops Prod 105:93–103CrossRefGoogle Scholar
  105. 105.
    Gul-e-Saba, Abdullah MA (2015) Polymeric nanoparticle mediated targeted drug delivery to cancer cells. In: Biotechnology and Bioinformatics, pp 1–34Google Scholar
  106. 106.
    Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3(1):16–20CrossRefGoogle Scholar
  107. 107.
    Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5(4):505–515CrossRefGoogle Scholar
  108. 108.
    Abdullah MA, Gul-e-Saba AA (2014) Cytotoxic effects of drug-loaded hyaluronan-glutaraldehyde cross-linked nanoparticles and the release kinetics modeling. J Adv Chem Eng 1(104):2Google Scholar
  109. 109.
    Van Vlerken LE, Amiji MM (2006) Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Expert Opin Drug Deliv 3(2):205–216CrossRefGoogle Scholar
  110. 110.
    Parveen S, Sahoo SK (2006) Nanomedicine. Clin Pharmacokinet 45(10):965–988CrossRefGoogle Scholar
  111. 111.
    Gul-e-Saba, Abdah A, Abdullah MA (2010) Hyaluronan-mediated CD44 receptor cancer cells progression and the application of controlled drug delivery system. Int J Curr Chem 1(4):245–265Google Scholar
  112. 112.
    Jin YJ, Ubonvan T, Kim DD (2010) Hyaluronic acid in drug delivery systems. J Pharm Invest 40(spc):33–43CrossRefGoogle Scholar
  113. 113.
    Jaracz S, Chen J, Kuznetsova LV, Ojima I (2005) Recent advances in tumor-targeting anticancer drug conjugates. Bioorg Med Chem 13(17):5043–5054CrossRefGoogle Scholar
  114. 114.
    Akima K, Ito H, Iwata Y, Matsuo K, Watari N, Yanagi M, Tatekawa I et al (1996) Evaluation of antitumor activities of hyaluronate binding antitumor drugs: synthesis, characterization and antitumor activity. J Drug Target 4(1):1–8CrossRefGoogle Scholar
  115. 115.
    Marinich JA, Ferrero C, Jiménez-Castellanos MR (2012) Graft copolymers of ethyl methacrylate on waxy maize starch derivatives as novel excipients for matrix tablets: drug release and fronts movement kinetics. Eur J Pharm Biopharm 80(3):674–681CrossRefGoogle Scholar
  116. 116.
    Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X (2014) Electrospinning of polymeric nanofibers for drug delivery applications. J Controlled Release 185:12–21CrossRefGoogle Scholar
  117. 117.
    Yoo HS, Kim TG, Park TG (2009) Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev 61(12):1033–1042CrossRefGoogle Scholar
  118. 118.
    Pillay V, Dott C, Choonara YE, Tyagi C, Tomar L, Kumar P, Ndesendo VM et al (2013) A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J Nanomater 2013Google Scholar
  119. 119.
    Sridhar R, Lakshminarayanan R, Madhaiyan K, Barathi VA, Lim KHC, Ramakrishna S (2015) Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chem Soc Rev 44(3):790–814CrossRefGoogle Scholar
  120. 120.
    Lim EK, Chung BH (2016) Preparation of pyrenyl-based multifunctional nanocomposites for biomedical applications. Nat Protoc 11(2):236CrossRefGoogle Scholar
  121. 121.
    Siddiqui IA, Adhami VM, Christopher J (2012) Impact of nanotechnology in cancer: emphasis on nanochemoprevention. Int J Nanomed 7:591Google Scholar
  122. 122.
    Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polymer J 59:302–325CrossRefGoogle Scholar
  123. 123.
    Yang J, Li J (2017) Self-assembled cellulose materials for biomedicine: a review. Carbohydr PolymGoogle Scholar
  124. 124.
    Bielska D, Karewicz A, Kamiński K, Kiełkowicz I, Lachowicz T, Szczubiałka K, Nowakowska M (2013) Self-organized thermo-responsive hydroxypropyl cellulose nanoparticles for curcumin delivery. Eur Polymer J 49(9):2485–2494CrossRefGoogle Scholar
  125. 125.
    He L, Liang H, Lin L, Shah BR, Li Y, Chen Y, Li B (2015) Green-step assembly of low density lipoprotein/sodium carboxymethyl cellulose nanogels for facile loading and pH-dependent release of doxorubicin. Colloids Surf B 126:288–296CrossRefGoogle Scholar
  126. 126.
    Rasoulzadeh M, Namazi H (2017) Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent. Carbohyd Polym 168:320–326CrossRefGoogle Scholar
  127. 127.
    Anirudhan TS, Nima J, Divya PL (2015) Synthesis, characterization and in vitro cytotoxicity analysis of a novel cellulose based drug carrier for the controlled delivery of 5-fluorouracil, an anticancer drug. Appl Surf Sci 355:64–73CrossRefGoogle Scholar
  128. 128.
    Guo Y, Zhang J, Wang L, Ge W, Chen M, Wang X, Sun R (2015) Preparation of fluorescent core/shell nanoparticles from amphiphilic cellulose-based copolymers for tumor cell imaging. J Controlled Release: Official J Controlled Release Soc 213:e132CrossRefGoogle Scholar
  129. 129.
    Coradin T, Allouche J, Boissière M, Livage J (2006) Sol-gel biopolymer/silica nanocomposites in biotechnology. Curr Nanosci 2(3):219–230CrossRefGoogle Scholar
  130. 130.
    De Azeredo HM (2009) Nanocomposites for food packaging applications. Food Res Int 42(9):1240–1253CrossRefGoogle Scholar
  131. 131.
    Liu X, Hu Q, Fang Z, Zhang X, Zhang B (2008) Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal. Langmuir 25(1):3–8CrossRefGoogle Scholar
  132. 132.
    Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38(10–11):1629–1652CrossRefGoogle Scholar
  133. 133.
    Cheung RCF, Ng TB, Wong JH, Chan WY (2015) Chitosan: an update on potential biomedical and pharmaceutical applications. Marine drugs 13(8):5156–5186CrossRefGoogle Scholar
  134. 134.
    Venkatesan P, Puvvada N, Dash R, Kumar BP, Sarkar D, Azab B, Mandal M et al (2011) The potential of celecoxib-loaded hydroxyapatite-chitosan nanocomposite for the treatment of colon cancer. Biomaterials 32(15):3794–3806CrossRefGoogle Scholar
  135. 135.
    Mendes AC, Gorzelanny C, Halter N, Schneider SW, Chronakis IS (2016) Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery. Int J Pharm 510(1):48–56CrossRefGoogle Scholar
  136. 136.
    Jiang H, Fang D, Hsiao B, Chu B, Chen W (2004) Preparation and characterization of ibuprofen-loaded poly (lactide-co-glycolide)/poly (ethylene glycol)-g-chitosan electrospun membranes. J Biomater Sci Polym Ed 15(3):279–296CrossRefGoogle Scholar
  137. 137.
    de Oliveira Barud HG, da Silva RR, da Silva Barud H, Tercjak A, Gutierrez J, Lustri WR, Ribeiro SJ et al (2016) A multipurpose natural and renewable polymer in medical applications: bacterial cellulose. Carbohyd Polym 153:406–420CrossRefGoogle Scholar
  138. 138.
    Muzzarelli RA (2011) Biomedical exploitation of chitin and chitosan via mechano-chemical disassembly, electrospinning, dissolution in imidazolium ionic liquids, and supercritical drying. Marine Drugs 9(9):1510–1533CrossRefGoogle Scholar
  139. 139.
    Garcia CEG, Martínez FAS, Bossard F, Rinaudo M (2018) Biomaterials based on electrospun chitosan. Relation between processing conditions and mechanical properties. Polymers 10(3):257CrossRefGoogle Scholar
  140. 140.
    Choi S, Jeong Y (2008) The removal of heavy metals in aqueous solution by hydroxyapatite/cellulose composite. Fibers Polym 9(3):267–270CrossRefGoogle Scholar
  141. 141.
    Ajab H, Dennis JO, Abdullah MA (2018) Synthesis and characterization of cellulose and hydroxyapatite-carbon electrode composite for trace plumbum ions detection and its validation in blood serum. Int J Biol Macromol 113:376–385CrossRefGoogle Scholar
  142. 142.
    Wang X, Guo Y, Li D, Chen H, Sun RC (2012) Fluorescent amphiphilic cellulose nanoaggregates for sensing trace explosives in aqueous solution. Chem Commun 48(45):5569–5571CrossRefGoogle Scholar
  143. 143.
    Moccelini SK, Franzoi AC, Vieira IC, Dupont J, Scheeren CW (2011) A novel support for laccase immobilization: cellulose acetate modified with ionic liquid and application in biosensor for methyldopa detection. Biosens Bioelectron 26(8):3549–3554CrossRefGoogle Scholar
  144. 144.
    Gao X, Sadasivuni KK, Kim HC, Min SK, Kim J (2015) Designing pH-responsive and dielectric hydrogels from cellulose nanocrystals. J Chem Sci 127(6):1119–1125CrossRefGoogle Scholar
  145. 145.
    Sadasivuni KK, Ponnamma D, Thomas S, Grohens Y (2014) Evolution from graphite to graphene elastomer composites. Prog Polym Sci 39(4):749–780CrossRefGoogle Scholar
  146. 146.
    Yuan JK, Yao SH, Dang ZM, Sylvestre A, Genestoux M, Bai1 J (2011) Giant dielectric permittivity nanocomposites: realizing true potential of pristine carbon nanotubes in polyvinylidene fluoride matrix through an enhanced interfacial interaction. J Phys Chem C 115(13):5515–5521CrossRefGoogle Scholar
  147. 147.
    Ponnamma D, Sadasivuni KK, Grohens Y, Guo Q, Thomas S (2014) Carbon nanotube based elastomer composites—an approach towards multifunctional materials. J Mater Chem C 2(40):8446–8485CrossRefGoogle Scholar
  148. 148.
    Mattoso LHC, Medeiros ES, Baker DA, Avloni J, Wood DF, Orts WJ (2009) Electrically conductive nanocomposites made from cellulose nanofibrils and polyaniline. J Nanosci Nanotechnol 9(5):2917–2922CrossRefGoogle Scholar
  149. 149.
    Xu J, Zhu L, Bai Z, Liang G, Liu L, Fang D, Xu W (2013) Conductive polypyrrole–bacterial cellulose nanocomposite membranes as flexible supercapacitor electrode. Org Electron 14(12):3331–3338CrossRefGoogle Scholar
  150. 150.
    Koga H, Saito T, Kitaoka T, Nogi M, Suganuma K, Isogai A (2013) Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube. Biomacromolecules 14(4):1160–1165CrossRefGoogle Scholar
  151. 151.
    Patel MU, Luong ND, Seppälä J, Tchernychova E, Dominko R (2014) Low surface area graphene/cellulose composite as a host matrix for lithium sulphur batteries. J Power Sources 254:55–61CrossRefGoogle Scholar
  152. 152.
    Yan C, Wang J, Kang W, Cui M, Wang X, Foo CY, Lee PS (2014) Highly stretchable piezoresistive graphene–nanocellulose nanopaper for strain sensors. Adv Mater 26(13):2022–2027CrossRefGoogle Scholar
  153. 153.
    Valentini L, Bon SB, Fortunati E, Kenny JM (2014) Preparation of transparent and conductive cellulose nanocrystals/graphene nanoplatelets films. J Mater Sci 49(3):1009–1013CrossRefGoogle Scholar
  154. 154.
    Namazi H, Baghershiroudi M, Kabiri R (2017) Preparation of electrically conductive biocompatible nanocomposites of natural polymer nanocrystals with polyaniline via in situ chemical oxidative polymerization. Polym Compos 38(S1)CrossRefGoogle Scholar
  155. 155.
    Le Bras D, Strømme M, Mihranyan A (2015) Characterization of dielectric properties of nanocellulose from wood and algae for electrical insulator applications. J Phys Chem B 119(18):5911–5917CrossRefGoogle Scholar
  156. 156.
    Maleki A, Kamalzare M (2014) Fe3O4@ cellulose composite nanocatalyst: preparation, characterization and application in the synthesis of benzodiazepines. Catal Commun 53:67–71CrossRefGoogle Scholar
  157. 157.
    Maleki A, Jafari AA, Yousefi S (2017) MgFe2O4/cellulose/SO3H nanocomposite: a new biopolymer-based nanocatalyst for one-pot multicomponent syntheses of polysubstituted tetrahydropyridines and dihydropyrimidinones. J Iran Chem Soc 14(8):1801–1813CrossRefGoogle Scholar
  158. 158.
    Maleki A, Movahed H, Ravaghi P (2017) Magnetic cellulose/Ag as a novel eco-friendly nanobiocomposite to catalyze synthesis of chromene-linked nicotinonitriles. Carbohyd Polym 156:259–267CrossRefGoogle Scholar
  159. 159.
    Maleki A, Ravaghi P, Aghaei M, Movahed H (2017) A novel magnetically recyclable silver-loaded cellulose-based bionanocomposite catalyst for green synthesis of tetrazolo [1, 5-a] pyrimidines. Res Chem Intermed 43(10):5485–5494CrossRefGoogle Scholar
  160. 160.
    Tang SC, Lo IM (2013) Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res 47(8):2613–2632CrossRefGoogle Scholar
  161. 161.
    Nassar NN (2010) Kinetics, mechanistic, equilibrium, and thermodynamic studies on the adsorption of acid red dye from wastewater by γ-Fe2O3 nanoadsorbents. Sep Sci Technol 45(8):1092–1103CrossRefGoogle Scholar
  162. 162.
    Tan Y, Chen M, Hao Y (2012) High efficient removal of Pb (II) by amino-functionalized Fe3O4 magnetic nano-particles. Chem Eng J 191:104–111CrossRefGoogle Scholar
  163. 163.
    Feng Y, Gong JL, Zeng GM, Niu QY, Zhang HY, Niu CG, Yan M et al (2010) Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chem Eng J 162(2):487–494CrossRefGoogle Scholar
  164. 164.
    Gómez-Pastora J, Bringas E, Ortiz I (2014) Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chem Eng J 256:187–204CrossRefGoogle Scholar
  165. 165.
    Nalbandian MJ, Zhang M, Sanchez J, Choa YH, Nam J, Cwiertny DM, Myung NV (2016) Synthesis and optimization of Fe2O3 nanofibers for chromate adsorption from contaminated water sources. Chemosphere 144:975–981CrossRefGoogle Scholar
  166. 166.
    Shariatinia Z, Zahraee Z (2017) Controlled release of metformin from chitosan–based nanocomposite films containing mesoporous MCM-41 nanoparticles as novel drug delivery systems. J Colloid Interface Sci 501:60–76CrossRefGoogle Scholar
  167. 167.
    Ding Y, Yin H, Shen S, Sun K, Liu F (2017) Chitosan-based magnetic/fluorescent nanocomposites for cell labelling and controlled drug release. New J Chem 41(4):1736–1743CrossRefGoogle Scholar
  168. 168.
    Lim EK, Sajomsang W, Choi Y, Jang E, Lee H, Kang B, Huh YM et al (2013) Chitosan-based intelligent theragnosis nanocomposites enable pH-sensitive drug release with MR-guided imaging for cancer therapy. Nanoscale Res Lett 8(1):467CrossRefGoogle Scholar
  169. 169.
    Prabha G, Raj V (2016) Preparation and characterization of polymer nanocomposites coated magnetic nanoparticles for drug delivery applications. J Magn Magn Mater 408:26–34CrossRefGoogle Scholar
  170. 170.
    Arias JL, Reddy LH, Couvreur P (2012) Fe3O4/chitosan nanocomposite for magnetic drug targeting to cancer. J Mater Chem 22(15):7622–7632CrossRefGoogle Scholar
  171. 171.
    Sun Y, Chen ZL, Yang XX, Huang P, Zhou XP, Du XX (2009) Magnetic chitosan nanoparticles as a drug delivery system for targeting photodynamic therapy. Nanotechnology 20(13):135102CrossRefGoogle Scholar
  172. 172.
    Zhang D, Sun P, Li P, Xue A, Zhang X, Zhang H, Jin X (2013) A magnetic chitosan hydrogel for sustained and prolonged delivery of Bacillus Calmette-Guérin in the treatment of bladder cancer. Biomaterials 34(38):10258–10266CrossRefGoogle Scholar
  173. 173.
    Lin J, Li Y, Li Y, Wu H, Yu F, Zhou S, Hou Z et al (2015) Drug/dye-loaded, multifunctional PEG–chitosan–iron oxide nanocomposites for methotraxate synergistically self-targeted cancer therapy and dual model imaging. ACS Appl Mater Interfaces 7(22):11908–11920CrossRefGoogle Scholar
  174. 174.
    Jia M, Li Y, Yang X, Huang Y, Wu H, Huang Y, Zhang Q et al (2014) Development of both methotrexate and mitomycin C loaded PEGylated chitosan nanoparticles for targeted drug codelivery and synergistic anticancer effect. ACS Appl Mater Interfaces 6(14):11413–11423CrossRefGoogle Scholar
  175. 175.
    Yadollahi M, Farhoudian S, Barkhordari S, Gholamali I, Farhadnejad H, Motasadizadeh H (2016) Facile synthesis of chitosan/ZnO bio-nanocomposite hydrogel beads as drug delivery systems. Int J Biol Macromol 82:273–278CrossRefGoogle Scholar
  176. 176.
    Vasile BS, Oprea O, Voicu G, Ficai A, Andronescu E, Teodorescu A, Holban A (2014) Synthesis and characterization of a novel controlled release zinc oxide/gentamicin–chitosan composite with potential applications in wounds care. Int J Pharm 463(2):161–169CrossRefGoogle Scholar
  177. 177.
    Chandran PR, Sandhyarani N (2014) An electric field responsive drug delivery system based on chitosan–gold nanocomposites for site specific and controlled delivery of 5-fluorouracil. RSC Adv 4(85):44922–44929CrossRefGoogle Scholar
  178. 178.
    Yadollahi M, Farhoudian S, Namazi H (2015) One-pot synthesis of antibacterial chitosan/silver bio-nanocomposite hydrogel beads as drug delivery systems. Int J Biol Macromol 79:37–43CrossRefGoogle Scholar
  179. 179.
    Bao H, Pan Y, Ping Y, Sahoo NG, Wu T, Li L, Gan LH et al (2011) Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small 7(11):1569–1578CrossRefGoogle Scholar
  180. 180.
    Justin R, Chen B (2014) Characterisation and drug release performance of biodegradable chitosan–graphene oxide nanocomposites. Carbohyd Polym 103:70–80CrossRefGoogle Scholar
  181. 181.
    Depan D, Kumar AP, Singh RP (2009) Cell proliferation and controlled drug release studies of nanohybrids based on chitosan-g-lactic acid and montmorillonite. Acta Biomater 5(1):93–100CrossRefGoogle Scholar
  182. 182.
    Aguzzi C, Capra P, Bonferoni C, Cerezo P, Salcedo I, Sánchez R, Viseras C et al (2010) Chitosan–silicate biocomposites to be used in modified drug release of 5-aminosalicylic acid (5-ASA). Appl Clay Sci 50(1):106–111CrossRefGoogle Scholar
  183. 183.
    Hua S, Yang H, Wang W, Wang A (2010) Controlled release of ofloxacin from chitosan–montmorillonite hydrogel. Appl Clay Sci 50(1):112–117CrossRefGoogle Scholar
  184. 184.
    Liu KH, Liu TY, Chen SY, Liu DM (2008) Drug release behavior of chitosan–montmorillonite nanocomposite hydrogels following electrostimulation. Acta Biomater 4(4):1038–1045CrossRefGoogle Scholar
  185. 185.
    Azhar FF, Olad A (2014) A study on sustained release formulations for oral delivery of 5-fluorouracil based on alginate–chitosan/montmorillonite nanocomposite systems. Appl Clay Sci 101:288–296CrossRefGoogle Scholar
  186. 186.
    Salcedo I, Sandri G, Aguzzi C, Bonferoni C, Cerezo P, Sánchez-Espejo R, Viseras C (2014) Intestinal permeability of oxytetracycline from chitosan-montmorillonite nanocomposites. Colloids Surf B 117:441–448CrossRefGoogle Scholar
  187. 187.
    Taleb MFA, Alkahtani A, Mohamed SK (2015) Radiation synthesis and characterization of sodium alginate/chitosan/hydroxyapatite nanocomposite hydrogels: a drug delivery system for liver cancer. Polym Bull 72(4):725–742CrossRefGoogle Scholar
  188. 188.
    Wang X, Du Y, Luo J, Lin B, Kennedy JF (2007) Chitosan/organic rectorite nanocomposite films: structure, characteristic and drug delivery behaviour. Carbohyd Polym 69(1):41–49CrossRefGoogle Scholar
  189. 189.
    Sun L, Wang Y, Jiang T, Zheng X, Zhang J, Sun J, Wang S et al (2012) Novel chitosan-functionalized spherical nanosilica matrix as an oral sustained drug delivery system for poorly water-soluble drug carvedilol. ACS Appl Mater Interfaces 5(1):103–113CrossRefGoogle Scholar
  190. 190.
    Yuan Q, Shah J, Hein SRDK, Misra RDK (2010) Controlled and extended drug release behavior of chitosan-based nanoparticle carrier. Acta Biomater 6(3):1140–1148CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohd Azmuddin Abdullah
    • 1
    Email author
  • Muhammad Shahid Nazir
    • 2
    Email author
  • Zaman Tahir
    • 3
  • Yasir Abbas
    • 3
  • Majid Niaz Akhtar
    • 4
  • Muhammad Rafi Raza
    • 5
  • Hanaa Ali Hussein
    • 1
  1. 1.Institute of Marine BiotechnologyUniversiti Malaysia TerengganuKuala NerusMalaysia
  2. 2.Department of ChemistryCOMSATS, Institute of Information TechnologyLahorePakistan
  3. 3.Department of Chemical EngineeringCOMSATS, Institute of Information TechnologyLahorePakistan
  4. 4.Department of PhysicsMuhammad Nawaz Shareef (MNS) University of Engineering and TechnologyMultanPakistan
  5. 5.Department of Mechanical EngineeringCOMSATS, Institute of Information TechnologySahiwalPakistan

Personalised recommendations