Advertisement

Recyclable and Eco-friendly Single Polymer Composite

  • Mohd Azmuddin AbdullahEmail author
  • Muhammad Afzaal
  • Safdar Ali Mirza
  • Sakinatu Almustapha
  • Hanaa Ali Hussein
Chapter

Abstract

Greater awareness towards the environmental issues such as global warming, emission of toxic pollutants and contaminants in the sea, air and on land, destruction of biodiversity and the needs to meet the sustainable development goals, has stimulated interest in the development of recyclable and eco-friendly single polymer composites. These are composite materials with mechanical properties comparable to the heterogeneous composites, fully recyclable and therefore providing economic and environmental advantages. An increasing trend is the use of natural fiber reinforced composites as low-cost composites with low density and high specific properties, non-abrasive and biodegradable. The major challenge in the fabrication of single polymer composites is the small melting temperature difference between the fiber and the matrix, and in the case of natural fibers, the incompatibility of the fibers with the matrix, and the poor resistance to moisture. This review article gives an overview of the developments in single polymer composites relating to the polymer sciences, materials selection, fabrication methods and the different types of recyclable and eco-friendly single polymer composites.

Keywords

Eco-friendly Waste recycling Single polymer composite Synthetic polymer Natural fibers Gel spinning Electrospinning Melt processing Ring-opening polymerization 

References

  1. 1.
    Capiati NJ, Porter RS (1975) The concept of one polymer composites modelled with high density polyethylene. J Mater Sci 10(10):1671–1677CrossRefGoogle Scholar
  2. 2.
    Barkoula NM, Peijs T, Schimanski T, Loos J (2005) Processing of single polymer composites using the concept of constrained fibers. Polym Compo 26(1):114–120CrossRefGoogle Scholar
  3. 3.
    Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol 18(4):351–363CrossRefGoogle Scholar
  4. 4.
    Herrera-Franco PJ, Valadez-Gonzalez A (2004) Mechanical properties of continuous natural fibre-reinforced polymer composites. Compos A Appl Sci Manuf 35(3):339–345CrossRefGoogle Scholar
  5. 5.
    Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2(5):1072–1092CrossRefGoogle Scholar
  6. 6.
    Thakur VK, Thakur MK, Gupta RK (2014) Raw natural fiber—based polymer composites. Int J Polym Anal Charact 19(3):256–271CrossRefGoogle Scholar
  7. 7.
    Klapiszewski Ł, Tomaszewska J, Skórczewska K, Jesionowski T (2017) Preparation and characterization of eco-friendly Mg (OH) 2/Lignin hybrid material and its use as a functional filler for Poly (Vinyl Chloride). Polym 9(7):258CrossRefGoogle Scholar
  8. 8.
    Abdullah MA, Nazir MS, Ajab H et al (2017) Advances in eco-friendly pre-treatment methods and utilization of agro-based lignocelluloses. In: Thangadurai D, Sangeetha J (eds) Industrial biotechnology: sustainable production and bioresource utilization. Apple Academic Press, USA, pp 371–420Google Scholar
  9. 9.
    Nazir MS, Abdullah MA, Raza MR (2017) Polypropylene composite with oil palm fibers: method development, properties and applications. Polypropylene-Based Biocomposites and Bionanocomposites 287Google Scholar
  10. 10.
    Mohanty AK, Misra M, Drzal LT et al (2002) Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world. J Polym Environ 10(1–2):19–26, Environ 10(112):19–20Google Scholar
  11. 11.
    Lithner D, Larsson Å, Dave G (2011) Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci Total Environ 409(18):3309–3324CrossRefGoogle Scholar
  12. 12.
    Gourmelon G (2015). Global plastic production rises, recycling lags. New Worldwatch Institute analysis explores trends in global plastic consumption and recycling. Recuperado de http://wwwworldwatch.org
  13. 13.
    Abdullah MA, Nazir MS, Raza MR, Wahjoedi BA, Yussof AW (2016) Autoclave and ultra-sonication treatments of oil palm empty fruit bunch fibers for cellulose extraction and its polypropylene composite properties. J Clean Prod 126:686–697CrossRefGoogle Scholar
  14. 14.
    Singh AA, Afrin S, Karim Z (2017) Green composites: versatile material for future. In Green biocomposites. Springer, Cham, pp 29–44Google Scholar
  15. 15.
    Matabola KP, De Vries AR, Moolman FS, Luyt AS (2009) Single polymer composites: a review. J Mater Sci 44(23):6213CrossRefGoogle Scholar
  16. 16.
    Peijs T (2003) Composites for recyclability. Mater Today 6(4):30–35CrossRefGoogle Scholar
  17. 17.
    Li R, Yao D (2008) Preparation of single poly (lactic acid) composites. J Appl Polym Sci 107(5):2909–2916CrossRefGoogle Scholar
  18. 18.
    Huo M, Yuan J, Tao L, Wei Y (2014) Redox-responsive polymers for drug delivery: from molecular design to applications. Polym Chem 5(5):1519–1528CrossRefGoogle Scholar
  19. 19.
    Sanjay MR, Madhu P, Jawaid M, Senthamaraikannan P, Senthil S, Pradeep S (2018) Characterization and properties of natural fiber polymer composites: a comprehensive review. J Clean Prod 172:566–581CrossRefGoogle Scholar
  20. 20.
    Lee HB, Khang G, Lee JH (2013) Polymeric biomaterials. In: Wong JY, Bronzino JD, Peterson DR (eds) Biomaterials: principles and practices. CRC Press, Boca Raton. Florida, USAGoogle Scholar
  21. 21.
    Carraher Jr CE (2003) Seymour/Carraher’s polymer chemistry. CRC PressGoogle Scholar
  22. 22.
    Shade Y (2016) Polymer engineering. White Word Publications, NY, USAGoogle Scholar
  23. 23.
    Harper CA, Petrie EM (2003) Plastics materials and processes: a concise encyclopedia. WileyGoogle Scholar
  24. 24.
    Mallakpour S, Zadehnazari A (2011) Advances in synthetic optically active condensation polymers—a review. Express Polym Lett 5(2):142–181CrossRefGoogle Scholar
  25. 25.
    Cao J, Yang NF, Wang PD, Yang LW (2008) Optically active polyethers from chiral terminal epoxides with bulky group. Polym Int 57(3):530–537CrossRefGoogle Scholar
  26. 26.
    Chiellini E, Senatori L, Solaro R (1988) A new chiral poly (alkyl vinyl ether): synthesis and chiroptical properties. Polym Bull 20(3):215–220CrossRefGoogle Scholar
  27. 27.
    Marvel CS, Overberger CG (1944) An optically active styrene derivative and its polymer1. J Am Chem Soc 66(3):475–477CrossRefGoogle Scholar
  28. 28.
    Bailey WJ, Yates ET (1960) Polymers. III. Synthesis of optically active stereoregular polyolefins1-3. J Org Chem 25(10):1800–1804CrossRefGoogle Scholar
  29. 29.
    Pino P, Ciardelli F, Lorenzi GP, Natta G (1962) Optically active vinyl polymers. VI. Chromatographic resolution of linear polymers of (R)(S)-4-methyl-1-hexene. J Am Chem Soc 84(8):1487–1488CrossRefGoogle Scholar
  30. 30.
    Rogers ME, Long TE (eds) (2003). Synthetic methods in step-growth polymers. WileyGoogle Scholar
  31. 31.
    Nakano T (2001) Optically active synthetic polymers as chiral stationary phases in HPLC. J Chromatogr A 906(1–2):205–225CrossRefGoogle Scholar
  32. 32.
    Dechy-Cabaret O, Martin-Vaca B, Bourissou D (2004) Controlled ring-opening polymerization of lactide and glycolide. Chem Rev 104(12):6147–6176CrossRefGoogle Scholar
  33. 33.
    Yamamoto T, Tezuka Y (2011) Topological polymer chemistry: a cyclic approach toward novel polymer properties and functions. Polymer Chem 2(9):1930–1941CrossRefGoogle Scholar
  34. 34.
    Adachi K, Tezuka Y (2009) Topological polymer chemistry in pursuit of elusive polymer ring constructions. J Synth Org Chem Jpn 67(11):1136–1143CrossRefGoogle Scholar
  35. 35.
    Endo K (2008) Synthesis and properties of cyclic polymers. New Frontiers in Polymer Synthesis. Springer, Berlin, Heidelberg, pp 121–183CrossRefGoogle Scholar
  36. 36.
    Yamamoto T, Tezuka Y (2012) Multicyclic polymers. In Synthesis of polymers: new structures and methods. Wiley-VCH, WeinheimGoogle Scholar
  37. 37.
    McKetta Jr JJ (1976) Encyclopedia of chemical processing and design: volume 1-abrasives to acrylonitrile. CRC pressGoogle Scholar
  38. 38.
    Brody H (1994).Synthetic fibre materials. LongmanGoogle Scholar
  39. 39.
    Kricheldorf HR, Nuyken O, Graham S (2005) Handbook of polymer synthesis. Marcel Dekker, New YorkGoogle Scholar
  40. 40.
    Zhang X (2014) Fundamentals of fiber science. DEStech Publications, IncGoogle Scholar
  41. 41.
  42. 42.
    Kristiansen M, Tervoort T, Smith P (2003) Synergistic gelation of solutions of isotactic polypropylene and bis-(3, 4-dimethyl benzylidene) sorbitol and its use in gel-processing. Polymer 44(19):5885–5891CrossRefGoogle Scholar
  43. 43.
    Lemstra PJ, Kirschbaum R (1985) Speciality products based on commodity polymers. Polymer 26(9):1372–1384CrossRefGoogle Scholar
  44. 44.
    Loos J, Schimanski T, Hofman J, Peijs T, Lemstra PJ (2001) Morphological investigations of polypropylene single-fibre reinforced polypropylene model composites. Polymer 42(8):3827–3834CrossRefGoogle Scholar
  45. 45.
    Takayanagi M, Imada K, Kajiyama T et al (1967) Mechanical properties and fine structure of drawn polymers. J Polym Sci: Polym Symp 15(1):263–281. (Wiley Subscription Services, Inc., A Wiley Company)Google Scholar
  46. 46.
    Peterlin A (1971) Molecular model of drawing polyethylene and polypropylene. J mater sci 6(6):490–508CrossRefGoogle Scholar
  47. 47.
    Gupta B, Revagade N, Hilborn J (2007) Poly (lactic acid) fiber: an overview. Prog Polym Sci 32(4):455–482CrossRefGoogle Scholar
  48. 48.
    Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos sci technol 63(15):2223–2253CrossRefGoogle Scholar
  49. 49.
    Ma J, Zhang Q, Mayo A, Ni Z, Yi H, Chen Y, Li D (2015) Thermal conductivity of electrospun polyethylene nanofibers. Nanoscale 7(40):16899–16908CrossRefGoogle Scholar
  50. 50.
    Berber E, Horzum N, Hazer B, Demir MM (2016) Solution electrospinning of polypropylene-based fibers and their application in catalysis. Fibers Polym 17(5):760–768CrossRefGoogle Scholar
  51. 51.
    Biazar E, Ahmadian M, Heidari S, Gazmeh A, Mohammadi SF, Lashay A, Hashemi H (2017) Electro-spun polyethylene terephthalate (PET) mat as a keratoprosthesis skirt and its cellular study. Fibers Polym 18(8):1545–1553CrossRefGoogle Scholar
  52. 52.
    Sereshti H, Amini F, Najarzadekan H (2015) Electrospun polyethylene terephthalate (PET) nanofibers as a new adsorbent for micro-solid phase extraction of chromium (VI) in environmental water samples. RSC Adv 5(108):89195–89203CrossRefGoogle Scholar
  53. 53.
    Matabola KP, De Vries AR, Luyt AS, Kumar R (2011) Studies on single polymer composites of poly (methyl methacrylate) reinforced with electrospun nanofibers with a focus on their dynamic mechanical propertiesGoogle Scholar
  54. 54.
    Casasola R, Thomas NL, Trybala A, Georgiadou S (2014) Electrospun poly lactic acid (PLA) fibres: effect of different solvent systems on fibre morphology and diameter. Polymer 55(18):4728–4737CrossRefGoogle Scholar
  55. 55.
    Casasola R, Thomas NL, Georgiadou S (2016) Electrospinning of poly (lactic acid): theoretical approach for the solvent selection to produce defect-free nanofibers. J Polym Sci, Part B: Polym Phys 54(15):1483–1498CrossRefGoogle Scholar
  56. 56.
    Alcock B, Cabrera NO, Barkoula NM, Loos J, Peijs T (2006) The mechanical properties of unidirectional all-polypropylene composites. Compos A Appl Sci Manuf 37(5):716–726CrossRefGoogle Scholar
  57. 57.
    Houshyar S, Shanks RA, Hodzic A (2005) The effect of fiber concentration on mechanical and thermal properties of fiber-reinforced polypropylene composites. J Appl Polym Sci 96(6):2260–2272CrossRefGoogle Scholar
  58. 58.
    Houshyar S, Shanks RA (2006) Mechanical and thermal properties of flexible poly (propylene) composites. Macromol Mater Eng 291(1):59–67CrossRefGoogle Scholar
  59. 59.
    Lacroix FV, Lu HQ, Schulte K (1999) Wet powder impregnation for polyethylene composites: preparation and mechanical properties. Compos A Appl Sci Manuf 30(3):369–373CrossRefGoogle Scholar
  60. 60.
    Cabrera N, Alcock B, Loos J, Peijs T (2004) Processing of all-polypropylene composites for ultimate recyclability. Proc Inst Mech Eng, Part L: J Mat: Des Appl 218(2):145–155Google Scholar
  61. 61.
    Hine PJ, Olley RH, Ward IM (2008) The use of interleaved films for optimising the production and properties of hot compacted, self reinforced polymer composites. Compos Sci Technol 68(6):1413–1421CrossRefGoogle Scholar
  62. 62.
    Jordan ND, Bassett DC, Olley RH, Hine PJ, Ward IM (2003) The hot compaction behaviour of woven oriented polypropylene fibres and tapes. II. Morphology of cloths before and after compaction. Polymer 44(4):1133–1143CrossRefGoogle Scholar
  63. 63.
    Shavit-Hadar L, Khalfin RL, Cohen Y, Rein DM (2005) Harnessing the melting peculiarities of ultra-high molecular weight polyethylene fibers for the processing of compacted fiber composites. Macromol Mater Eng 290(7):653–656CrossRefGoogle Scholar
  64. 64.
    Hine PJ, Astruc A, Ward IM (2004) Hot compaction of polyethylene naphthalate. J Appl Polym Sci 93(2):796–802CrossRefGoogle Scholar
  65. 65.
    Wright-Charlesworth DD, Lautenschlager EP, Gilbert JL (2005) Hot compaction of poly (methyl methacrylate) composites based on fiber shrinkage results. J Mater Sci—Mater Med 16(10):967–975CrossRefGoogle Scholar
  66. 66.
    Wang J, Chen J, Dai P, Wang S, Chen D (2015) Properties of polypropylene single-polymer composites produced by the undercooling melt film stacking method. Compos Sci Technol 107:82–88CrossRefGoogle Scholar
  67. 67.
    Lacroix FV, Loos J, Schulte K (1999) Morphological investigations of polyethylene fibre reinforced polyethylene. Polymer 40(4):843–847CrossRefGoogle Scholar
  68. 68.
    Wang J, Chen J, Dai P (2014) Polyethylene naphthalate single-polymer-composites produced by the undercooling melt film stacking method. Compos Sci Technol 91:50–54CrossRefGoogle Scholar
  69. 69.
    Porras A, Tellez J, Casas-Rodriguez JP (2012) Delamination toughness of ultra high molecular weight polyethylene (UHMWPE) composites. In EPJ Web of Conferences, vol 26, p 02016. EDP SciencesCrossRefGoogle Scholar
  70. 70.
    Goswami TK, Mangaraj S (2011) Advances in polymeric materials for modified atmosphere packaging (MAP). In Multifunctional and nanoreinforced polymers for food packaging, pp 163–242CrossRefGoogle Scholar
  71. 71.
    Karger-Kocsis J, Siengchin S (2014) Single-polymer composites: concepts, realization and outlook. KMUTNB Int J Appl Sci Technol 7(1):1–9CrossRefGoogle Scholar
  72. 72.
  73. 73.
    Khanam PN, AlMaadeed MAA (2015) Processing and characterization of polyethylene-based composites. Adv Manuf: Polym Compos Sci 1(2):63–79Google Scholar
  74. 74.
    Mead WT, Porter RS (1978) The preparation and tensile properties of polyethylene composites. J Appl Polym Sci 22(11):3249–3265CrossRefGoogle Scholar
  75. 75.
    Mosleh M, Suh NP, Arinez J (1998) Manufacture and properties of a polyethylene homocomposite. Compos A Appl Sci Manuf 29(5–6):611–617CrossRefGoogle Scholar
  76. 76.
    Lacroix FV, Werwer M, Schulte K (1998) Solution impregnation of polyethylene fibre/polyethylene matrix composites. Compos A Appl Sci Manuf 29(4):371–376CrossRefGoogle Scholar
  77. 77.
    Teishev A, Incardona S, Migliaresi C, Marom G (1993) Polyethylene fibers-polyethylene matrix composites: Preparation and physical properties. J Appl Polym Sci 50(3):503–512CrossRefGoogle Scholar
  78. 78.
    Devaux E, Caze C (1999) Composites of ultra-high-molecular-weight polyethylene fibres in a low-density polyethylene matrix: II. Fibre/matrix adhesion. Compos Sci Technol 59(6):879–882CrossRefGoogle Scholar
  79. 79.
    Hameed T, Hussein IA (2004) Effect of short chain branching of LDPE on its miscibility with linear HDPE. Macromol Mater Eng 289(2):198–203CrossRefGoogle Scholar
  80. 80.
    Houshyar S, Shanks RA (2003) Morphology, thermal and mechanical properties of Poly (propylene) fibre-matrix composites. Macromol Mater Eng 288(8):599–606CrossRefGoogle Scholar
  81. 81.
    Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38(10–11):1629–1652CrossRefGoogle Scholar
  82. 82.
    Garlotta D (2001) A literature review of poly (lactic acid). J Polym Environ 9(2):63–84Google Scholar
  83. 83.
    Benninga H (1990) A history of lactic acid making: a chapter in the history of biotechnology, vol 11. Springer Science & Business MediaGoogle Scholar
  84. 84.
    Datta R, Tsai SP, Bonsignore P, Moon SH, Frank JR (1995) Technological and economic potential of poly (lactic acid) and lactic acid derivatives. FEMS Microbiol Rev 16(2–3):221–231CrossRefGoogle Scholar
  85. 85.
    Kharas GB, Sanchez-Riera F, Severson DK (1994) In: Mobley DP (ed) Plastics from microbes. Hanser-Gardner, Munich, pp 93–137Google Scholar
  86. 86.
    Van Ness JH (1981) Kirk-Othmer encyclopedia of chemical technology. 3rd ed, vol 13. Wiley, New York, pp 80–103Google Scholar
  87. 87.
    Hartmann MH (1998) High molecular weight polylactic acid polymers. In: Biopolymers from renewable resources, pp 367–411. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  88. 88.
    Buchholz B (1994) U.S. Patent No. 5,302,694. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  89. 89.
    Tsuji H, Ikada Y (1999) Physical properties of polylactides. Curr Trends Polym Sci 4:27Google Scholar
  90. 90.
    Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stab 59(1–3):145–152CrossRefGoogle Scholar
  91. 91.
    Kricheldorf HR, Kreiser I (1987) Polylactones, 11. Cationic copolymerization of glycolide with l, l-dilactide. Die Makromolekulare Chemie. Macromol Chem Phys 188(8):1861–1873CrossRefGoogle Scholar
  92. 92.
    Kricheldorf HR, Sumbel M (1989) Polylactones—18. Polymerization of l, l-lactide with Sn (II) and Sn (IV) halogenides. Eur Polymer J 25(6):585–591CrossRefGoogle Scholar
  93. 93.
    Dittrich VW, Schulz RC (1971) Kinetik und Mechanismus der ringöffnenden Polymerisation von l (−)-Lactid. Die Angewandte Makromolekulare Chemie: Applied Macromolecular Chemistry and Physics 15(1):109–126CrossRefGoogle Scholar
  94. 94.
    Kricheldorf HR, Dunsing R (1986) Polylactones, 8. Mechanism of the cationic polymerization of l, l-dilactide. Die Makromolekulare Chemie. Macromol Chem Phys 187(7):1611–1625CrossRefGoogle Scholar
  95. 95.
    Kricheldorf HR, Kreiser-Saunders I (1990) Polylactones,19. Anionic polymerization of L-lactide in solution. Die Makromolekulare Chemie: Macromol Chem Phys 191(5):1057–1066CrossRefGoogle Scholar
  96. 96.
    Dahlmann J, Rafler G, Fechner K, Mehlis B (1990) Synthesis and properties of biodegradable aliphatic polyesters. Polym Int 23(3):235–240Google Scholar
  97. 97.
    Kricheldorf HR, Serra A (1985) Polylactones. Polym Bull 14(6):497–502CrossRefGoogle Scholar
  98. 98.
    Kohn FE, Van Den Berg JWA, Van De Ridder G, Feijen J (1984) The ring-opening polymerization of d, l-lactide in the melt initiated with tetraphenyltin. J Appl Polym Sci 29(12):4265–4277CrossRefGoogle Scholar
  99. 99.
    Enomoto K, Ajioka M, Yamaguchi A (1994) U.S. Patent No. 5,310,865. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  100. 100.
    Kashima T, Kameoka T, Higuchi C, Ajioka M, Yamaguchi A (1995) U.S. Patent No. 5,428,126. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  101. 101.
    Ichikawa F, Kobayashi M, Ohta M, Yoshida Y, Obuchi S, Itoh H (1995) U.S. Patent No. 5,440,008. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  102. 102.
    Ohta M, Obuchi S, Yoshida Y (1995) U.S. Patent No. 5,444,143. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  103. 103.
    Ajioka M, Enomoto K, Suzuki K, Yamaguchi A (1995) The basic properties of poly (lactic acid) produced by the direct condensation polymerization of lactic acid. J Environ Polym Degradat 3:225–234CrossRefGoogle Scholar
  104. 104.
    Ajioka M, Enomoto K, Suzuki K, Yamaguchi A (1995) Basic properties of polylactic acid produced by the direct condensation polymerization of lactic acid. Bull Chem Soc Jpn 68(8):2125–2131CrossRefGoogle Scholar
  105. 105.
    Suizu H, Takagi M, Ajioka M, Yamaguchi A (1996) U.S. Patent No. 5,496,923. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  106. 106.
    Hu Y, Daoud WA, Cheuk KKL, Lin CSK (2016) Newly developed techniques on polycondensation, ring-opening polymerization and polymer modification: focus on poly (lactic acid). Materials 9(3):133CrossRefGoogle Scholar
  107. 107.
    Achmad F, Yamane K, Quan S, Kokugan T (2009) Synthesis of polylactic acid by direct polycondensation under vacuum without catalysts, solvents and initiators. Chem Eng J 151(1–3):342–350CrossRefGoogle Scholar
  108. 108.
    Nagahata R, Sano D, Suzuki H, Takeuchi K (2007) Microwave-assisted single-step synthesis of poly (lactic acid) by direct polycondensation of lactic acid. Macromol Rapid Commun 28(4):437–442CrossRefGoogle Scholar
  109. 109.
    Gupta AP, Kumar V (2007) New emerging trends in synthetic biodegradable polymers–Polylactide: a critique. Eur Polymer J 43(10):4053–4074CrossRefGoogle Scholar
  110. 110.
    Kim KW, Woo SI (2002) Synthesis of high‐molecular‐weight poly (l‐lactic acid) by direct polycondensation. macromolecular chemistry and physics 203(15):2245–2250CrossRefGoogle Scholar
  111. 111.
    Fukushima K, Kimura Y (2008) An efficient solid-state polycondensation method for synthesizing stereocomplexed poly (lactic acid) s with high molecular weight. J Polym Sci, Part A: Polym Chem 46(11):3714–3722CrossRefGoogle Scholar
  112. 112.
    Fukushima K, Furuhashi Y, Sogo K, Miura S, Kimura Y (2005) Stereoblock poly (lactic acid): synthesis via solid-state polycondensation of a stereocomplexed mixture of poly (l-lactic acid) and poly (d-lactic acid). Macromol Biosci 5(1):21–29CrossRefGoogle Scholar
  113. 113.
  114. 114.
    https://www.natureworksllc.com. Accessed 26 May 2018
  115. 115.
    Oota M, Ito M (1998) U.S. Patent No. 5,821,327. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  116. 116.
    Nuyken O, Pask SD (2013) Ring-opening polymerization—an introductory review. Polymers 5(2):361–403CrossRefGoogle Scholar
  117. 117.
    Stridsberg KM, Ryner M, Albertsson AC (2002) Controlled ring-opening polymerization: polymers with designed macromolecular architecture. In: Degradable aliphatic polyesters, pp. 41–65. Springer, BerlinGoogle Scholar
  118. 118.
    Jacobsen S, Fritz HG, Degée P, Dubois P, Jérôme R (2000) New developments on the ring opening polymerisation of polylactide. Ind Crops Prod 11(2–3):265–275CrossRefGoogle Scholar
  119. 119.
    Korhonen H, Helminen A, Seppälä JV (2001) Synthesis of polylactides in the presence of co-initiators with different numbers of hydroxyl groups. Polymer 42(18):7541–7549CrossRefGoogle Scholar
  120. 120.
    Zhong Z, Dijkstra PJ, Feijen J (2002) [(salen) Al]-mediated, controlled and stereoselective ring-opening polymerization of lactide in solution and without solvent: synthesis of highly isotactic polylactide stereocopolymers from racemic d, l-lactide. Angew Chem Int Ed 41(23):4510–4513CrossRefGoogle Scholar
  121. 121.
    Kaihara S, Matsumura S, Mikos AG, Fisher JP (2007) Synthesis of poly (l-lactide) and polyglycolide by ring-opening polymerization. Nat Protoc 2(11):2767CrossRefGoogle Scholar
  122. 122.
    Lohmeijer BG, Pratt RC, Leibfarth F, Logan JW, Long DA, Dove AP et al (2006). Guanidine and amidine organocatalysts for ring-opening polymerization of cyclic esters. Macromolecules 39(25):8574–8583CrossRefGoogle Scholar
  123. 123.
    Kamber NE, Jeong W, Waymouth RM, Pratt RC, Lohmeijer BG, Hedrick JL (2007) Organocatalytic ring-opening polymerization. Chem Rev 107(12):5813–5840CrossRefGoogle Scholar
  124. 124.
    Rusu D, Boyer SE, Lacrampe MF, Krawczak P (2001). Bioplastics and vegetal fiber reinforced bioplastics for automotive applications. In: Pilla S (ed) Handbook of bioplastics and biocomposites engineering applications. Scrivener Publishing, Massachusetts 2011:397–449CrossRefGoogle Scholar
  125. 125.
    Spinu M, Jackson C, Keating MY, Gardner KH (1996) Material design in poly (lactic acid) systems: block copolymers, star homo-and copolymers, and stereocomplexes. J Macromol Sci Part A Pure Appl Chem 33(10):1497–1530CrossRefGoogle Scholar
  126. 126.
    Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv Drug Deliv Rev 107:367–392CrossRefGoogle Scholar
  127. 127.
    Ikada Y, Jamshidi K, Tsuji H, Hyon SH (1987) Stereocomplex formation between enantiomeric poly (lactides). Macromolecules 20(4):904–906CrossRefGoogle Scholar
  128. 128.
    Tsuji H (2000) Stereocomplex from enantiomeric polylactides. Res Adv Macromol 1:25–28Google Scholar
  129. 129.
    Kirschbaum R, van Dingenen JLJ (1989) Integration of fundamental polymer science and technology, vol 3. In: Lemstra PJ, Kleintjes LA (eds) Elsevier, London, p 178Google Scholar
  130. 130.
    Bastiaansen CMW, Lemstra PJ (1989) Macromolecular chemistry. Macromol Symp 28:p. 73)CrossRefGoogle Scholar
  131. 131.
    Samuels RJ (1979) High strength elastic polypropylene. J Polym Sci, Part B: Polym Phys 17(4):535–568Google Scholar
  132. 132.
    Tanaka H, Takagi N, Okajima S (1974) Melting behavior of highly stretched isotactic polypropylene film. J Polym Sci, Part A: Polym Chem 12(12):2721–2728Google Scholar
  133. 133.
    Tormala P, Rokkanen P, Laiho J, Tamminmaki M, Vainionpaa S (1988) U.S. Patent No. 4,743,257. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  134. 134.
    Jia W, Gong RH, Hogg PJ (2014) Poly (lactic acid) fibre reinforced biodegradable composites. Compos B Eng 62:104–112CrossRefGoogle Scholar
  135. 135.
    Wu N, Liang Y, Zhang K, Xu W, Chen L (2013) Preparation and bending properties of three dimensional braided single poly (lactic acid) composite. Compos B Eng 52:106–113CrossRefGoogle Scholar
  136. 136.
    Liu Q, Zhao M, Zhou Y, Yang Q, Shen Y, Gong RH, Deng B (2018) Polylactide single-polymer composites with a wide melt-processing window based on core-sheath PLA fibers. Mat Des 139:36–44CrossRefGoogle Scholar
  137. 137.
    Mai F, Tu W, Bilotti E, Peijs T (2015) Preparation and properties of self-reinforced poly (lactic acid) composites based on oriented tapes. Compos A Appl Sci Manuf 76:145–153CrossRefGoogle Scholar
  138. 138.
    Barrows TH (1999) Bioabsorbable fibers and reinforced composites produced there from PCT. US 6,511,748 B1. WO99/34750Google Scholar
  139. 139.
    Kriel H, Sanderson RD, Smit E (2013) Single polymer composite yarns and films prepared from heat bondable poly (lactic acid) core-shell fibres with submicron fibre diameters. Fibres & Textiles in Eastern EuropeGoogle Scholar
  140. 140.
    Chen LS, Huang ZM, Dong GH, He CL, Liu L, Hu YY, Li Y (2009) Development of a transparent PMMA composite reinforced with nanofibers. Polym Compos 30(3):239–247CrossRefGoogle Scholar
  141. 141.
    Dorigato A, Pegoretti A (2012) Biodegradable single-polymer composites from polyvinyl alcohol. Colloid Polym Sci 290(4):359–370CrossRefGoogle Scholar
  142. 142.
    Matsumura S, Toshima K (1996) Biodegradation of poly (vinyl alcohol) and vinyl alcohol block as biodegradable segmentGoogle Scholar
  143. 143.
    Matsumura S, Tomizawa N, Toki A, Nishikawa K, Toshima K (1999) Novel poly (vinyl alcohol)-degrading enzyme and the degradation mechanism. Macromolecules 32(23):7753–7761CrossRefGoogle Scholar
  144. 144.
    Chen N, Li L, Wang Q (2007) New technology for thermal processing of poly (vinyl alcohol). Plast, Rubber Compos 36(7–8):283–290CrossRefGoogle Scholar
  145. 145.
    Chiellini E, Corti A, D’Antone S, Solaro R (2003) Biodegradation of poly (vinyl alcohol) based materials. Progr Polym Sci 28(6):963–1014CrossRefGoogle Scholar
  146. 146.
    Petrushenko EF, Voskanyan PS, Pakharenko V (1988) Rheological Properties of PVA Based Compositions. Plast Massy 11:23–24Google Scholar
  147. 147.
    Shao Y, Shah SP (1997) Mechanical properties of PVA fiber reinforced cement composites fabricated by extrusion processing. ACI Mater J 94(6):555–564Google Scholar
  148. 148.
    Fakirov S (2013) Nano-and microfibrillar single-polymer composites: a review. Macromol Mater Eng 298(1):9–32CrossRefGoogle Scholar
  149. 149.
    Karger-Kocsis J, Bárány T (2014) Single-polymer composites (SPCs): Status and future trends. Compos Sci Technol 92:77–94CrossRefGoogle Scholar
  150. 150.
    Dencheva N, Denchev Z, Pouzada AS, Sampaio AS, Rocha AM (2013) Structure–properties relationship in single polymer composites based on polyamide 6 prepared by in-mold anionic polymerization. J Mat Sci 48(20):7260–7273CrossRefGoogle Scholar
  151. 151.
    Bocz K, Toldy A, Kmetty Á, Bárány T, Igricz T, Marosi G (2012) Development of flame retarded self-reinforced composites from automotive shredder plastic waste. Polym Degrad Stab 97(3):221–227CrossRefGoogle Scholar
  152. 152.
    Lukkassen D, Meidell A (2003) Advanced materials and structures and their fabrication processes. Narrik University College, HinGoogle Scholar
  153. 153.
    Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Poly‐lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Safety 9(5):552–571CrossRefGoogle Scholar
  154. 154.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohd Azmuddin Abdullah
    • 1
    Email author
  • Muhammad Afzaal
    • 2
  • Safdar Ali Mirza
    • 3
  • Sakinatu Almustapha
    • 4
  • Hanaa Ali Hussein
    • 1
  1. 1.Institute of Marine Biotechnology, Universiti Malaysia TerengganuKuala NerusMalaysia
  2. 2.Department of Sustainable Development Study Center (Environmental Sciences)GC UniversityLahorePakistan
  3. 3.Department of BotanyGC UniversityLahorePakistan
  4. 4.Department of Basic and Applied SciencesHassan Usman Katsina PolytechnicKatsina StateNigeria

Personalised recommendations