Extraction of Cellulose Nanofibers and Their Eco-friendly Polymer Composites

  • M. Hazwan HussinEmail author
  • Djalal Trache
  • Caryn Tan Hui Chuin
  • M. R. Nurul Fazita
  • M. K. Mohamad Haafiz
  • Md. Sohrab Hossain


Polymer-based materials are an important and promising area of research exhibiting strong developments (Sadeghi et al. in J Mol Liq 263:282–287, 2018, [1; Rezakazemi et al. in Progr Energy Combust Sci 66:1–41, 2018 [2]). They play a prominent role in the modern civilization and find application in different industries related to electrical and electronic equipment, chemicals, automotive, spacecraft, energy storage in batteries and supercapacitors and medical to cite a few.

List of Abbreviations




1-butyl-3-methylimidazolium chloride


1-butyl-3-methylimidazolium hydrogen sulfate


1-ethyl-3-methyllimidazolium acetate


1-(4-sulfobutyl)-3-methylimidazolium hydrogen sulfate


Atomic force microscopy


Anhydroglucose unit


Amorphous nanocellulose


Bacterial cellulose




Cellulose nanocrystal


Cellulose nanofibrils


Cellulose nanomaterials


Cellulose nanoyarn


Crystallinity index


Apparent crystallite size


Differential scanning calorimetry


Fourier Transform


High-energy bead milling


Kilogram per day






Scanning electron microscope


Technical Association of the Pulp and Paper Industry


Tetrabutylammonium acetate


Transmission electron microscope




Thermogravimetric analysis


Melting point temperature


X-ray Diffraction


X-ray wavelength



Authors wish to thank their parental institutes (Universiti Sains Malaysia through USM Research University Incentive, RUI Grant 1001/PKIMIA/8011077 and Short Term Grant 304/PKIMIA/6315100) for providing the necessary facility to accomplish this work.


  1. 1.
    Sadeghi A et al (2018) Predictive construction of phase diagram of ternary solutions containing polymer/solvent/nonsolvent using modified Flory-Huggins model. J Mol Liq 263:282–287CrossRefGoogle Scholar
  2. 2.
    Rezakazemi M, Sadrzadeh M, Matsuura T (2018) Thermally stable polymers for advanced high-performance gas separation membranes. Prog Energy Combust Sci 66:1–41CrossRefGoogle Scholar
  3. 3.
    Kumode MMN et al (2017) Microfibrillated nanocellulose from balsa tree as potential reinforcement in the preparation of ‘green’composites with castor seed cake. J Clean Prod 149:1157–1163CrossRefGoogle Scholar
  4. 4.
    Kargarzadeh H et al (2017) Handbook of nanocellulose and cellulose nanocomposites. Wiley Online LibraryGoogle Scholar
  5. 5.
    Jawaid M, Boufi S, Abdul KH et al (2017) Cellulose-reinforced nanofiber composites. ElsevierGoogle Scholar
  6. 6.
    Trache D (2017) Microcrystalline cellulose and related polymer somposites: synthesis, characterization and properties. In: Handbook of composites from renewable materials, Thakur VK, Kumari Thakur M, Kessler MR et al (eds). Scrivener Publishing LLC, pp 61–92Google Scholar
  7. 7.
    Kargarzadeh H et al (2017) Recent developments on nanocellulose reinforced polymer nanocomposite: A review polymerGoogle Scholar
  8. 8.
    Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci, Part B: Polym Phys 52(12):791–806CrossRefGoogle Scholar
  9. 9.
    Trache D et al (2016) Microcrystalline cellulose: isolation, characterization and bio-composites application—A review. Int J Biol Macromol 93(Pt A):789–804CrossRefGoogle Scholar
  10. 10.
    Satyanarayana KG, Arizaga GG, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—An overview. Prog Polym Sci 34(9):982–1021CrossRefGoogle Scholar
  11. 11.
    Moon RJ et al (2011) Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994CrossRefGoogle Scholar
  12. 12.
    Haafiz MM et al (2015) Bionanocomposite based on cellulose nanowhisker from oil palm biomass-filled poly (lactic acid). Polym Test 48:133–139CrossRefGoogle Scholar
  13. 13.
    Trache D et al (2017) Recent progress in cellulose nanocrystals: Sources and production. Nanoscale 9(5):1763–1786CrossRefGoogle Scholar
  14. 14.
    Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25CrossRefGoogle Scholar
  15. 15.
    Oun AA, Rhim J-W (2016) Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellulose-based nanocomposite films. Carbohyd Polym 150:187–200CrossRefGoogle Scholar
  16. 16.
    Chirayil CJ, Mathew L, Thomas S (2014) Review of recent research in nano cellulose preparation from different lignocellulosic fibers. Rev Adv Mater Sci 37:20–28Google Scholar
  17. 17.
    Thakur VK (2015) Nanocellulose polymer nanocomposites: fundamentals and applications. WileyGoogle Scholar
  18. 18.
    Qin X et al (2015) Tuning glass transition in polymer nanocomposites with functionalized cellulose nanocrystals through nanoconfinement. Nano Lett 15(10):6738–6744CrossRefGoogle Scholar
  19. 19.
    Boujemaoui A et al (2015) Preparation and characterization of functionalized cellulose nanocrystals. Carbohyd Polym 115:457–464CrossRefGoogle Scholar
  20. 20.
    Kim J-H et al (2015) Review of nanocellulose for sustainable future materials. Int J Prec Eng Manufact-Green Technol 2(2):197–213CrossRefGoogle Scholar
  21. 21.
    Ng H-M et al (2015) Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos B Eng 75:176–200CrossRefGoogle Scholar
  22. 22.
    Xu X et al (2014) Comparison between cellulose nanocrystal and cellulose nanofibril reinforced poly (ethylene oxide) nanofibers and their novel shish-kebab-like crystalline structures. Macromolecules 47(10):3409–3416CrossRefGoogle Scholar
  23. 23.
    Singla R et al (2016) Nanocellulose and nanocomposites. In: Nanoscale materials in targeted drug delivery, theragnosis and tissue regeneration, Springer, pp 103–125Google Scholar
  24. 24.
    Moon RJ, Schueneman GT, Simonsen J (2016) Overview of cellulose nanomaterials, their capabilities and applications. JOM 68(9):2383–2394CrossRefGoogle Scholar
  25. 25.
    Vazquez A et al (2015) Extraction and production of cellulose nanofibers. In: Handbook of polymer nanocomposites. Processing, performance and application. Springer, pp 81–118Google Scholar
  26. 26.
    Thakur VK (2015) Lignocellulosic polymer composites: processing, characterization, and properties. WileyGoogle Scholar
  27. 27.
    Pandey J et al (2015) Handbook of polymer nanocomposites. Processing, performance and application. SpringerGoogle Scholar
  28. 28.
    Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polymer J 59:302–325CrossRefGoogle Scholar
  29. 29.
    Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500CrossRefGoogle Scholar
  30. 30.
    Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polym 2(4):728–765CrossRefGoogle Scholar
  31. 31.
    Borges J et al (2015) Cellulose-based liquid crystalline composite systems. In: Thakur VK (ed) Nanocellulose polymer nanocomposites: fundamentals and applications. Wiley-Scrivener, pp 215–235Google Scholar
  32. 32.
    Wertz J-L, Mercier JP, Bédué O (2010) Cellulose science and technology. CRC Press, SwitzerlandGoogle Scholar
  33. 33.
    Postek MT et al (2013) Production and applications of cellulose. Tappi Press, Peachtree CornersGoogle Scholar
  34. 34.
    Klemm D et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466CrossRefGoogle Scholar
  35. 35.
    Klemm D et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393CrossRefGoogle Scholar
  36. 36.
    Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6(14):7764–7779CrossRefGoogle Scholar
  37. 37.
    Wei H et al (2014) Environmental science and engineering applications of nanocellulose-based nanocomposites. Environ Sci: Nano 1(4):302–316Google Scholar
  38. 38.
    Heinze T (2016) Cellulose: structure and properties. In: Cellulose chemistry and properties: Fibers, nanocelluloses and advanced materials. Springer, pp 1–52Google Scholar
  39. 39.
    Trache D et al (2014) Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres. Carbohyd Polym 104:223–230CrossRefGoogle Scholar
  40. 40.
    Gupta V et al (2016) Cellulose: a review as natural, modified and activated carbon adsorbent. Biores Technol 216:1066–1076CrossRefGoogle Scholar
  41. 41.
    Oksman K et al (2014) Handbook of green materials: Processing technologies, properties and applications (in 4 volumes), vol 5. World ScientificGoogle Scholar
  42. 42.
    ISO/TS80004–1 (2010) International organization for standardization. ISO technical specification ISO/TS80004-1, Nanotechnologies—Vocabulary—Part 1: Core termsGoogle Scholar
  43. 43.
    ISO/TS27687 (2008) International organization for standardization. ISO technical specification ISO/TS 27687, Nanotechnologies—Terminology and definitions for nano-objects-Nanoparticle, nanofiber and nanoplateGoogle Scholar
  44. 44.
    Brinchi L et al (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohyd Polym 94(1):154–169CrossRefGoogle Scholar
  45. 45.
    Charreau H, Foresti ML, Vázquez A et al (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent patents on nanotechnology, 7(1), pp 56–80CrossRefGoogle Scholar
  46. 46.
    TAPPI (2017) Standard terms and their definition for cellulose nanomaterial. WI 3021, Accessed 01 Dec 2017
  47. 47.
    Gama M, Gatenholm P, Klemm D et al (2012) Bacterial nanocellulose: a sophisticated multifunctional material. CRC PressGoogle Scholar
  48. 48.
    Thakur VK, Voicu SI (2016) Recent advances in cellulose and chitosan based membranes for water purification: a concise review. Carbohyd Polym 146:148–165CrossRefGoogle Scholar
  49. 49.
    Dufresne A (2013) Nanocellulose: from nature to high performance tailored materials. Walter de GruyterGoogle Scholar
  50. 50.
    Agbor VB et al (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29(6):675–685CrossRefGoogle Scholar
  51. 51.
    Trache D et al (2016) Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability. J Therm Anal Calorim 124(3):1485–1496CrossRefGoogle Scholar
  52. 52.
    Ummartyotin S, Manuspiya H (2015) A critical review on cellulose: from fundamental to an approach on sensor technology. Renew Sustain Energy Rev 41:402–412CrossRefGoogle Scholar
  53. 53.
    Jonoobi M et al (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellul 22(2):935–969CrossRefGoogle Scholar
  54. 54.
    Dufresne A, Belgacem MN (2013) Cellulose-reinforced composites: from micro-to nanoscale. Polímeros 23(3):277–286Google Scholar
  55. 55.
    Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227CrossRefGoogle Scholar
  56. 56.
    Abdul Khalil H et al (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohyd Polym 99:649–665CrossRefGoogle Scholar
  57. 57.
    Lavoine N et al (2012) Microfibrillated cellulose—Its barrier properties and applications in cellulosic materials: a review. Carbohyd Polym 90(2):735–764CrossRefGoogle Scholar
  58. 58.
    Gama M, Dourado F, Bielecki S et al (2016) Bacterial nanocellulose: from biotechnology to bio-economy. ElsevierGoogle Scholar
  59. 59.
    Vasconcelos NF et al (2017) Bacterial cellulose nanocrystals produced under different hydrolysis conditions: properties and morphological features. Carbohyd Polym 155:425–431CrossRefGoogle Scholar
  60. 60.
    Campano C et al (2016) Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellul 23(1):57–91CrossRefGoogle Scholar
  61. 61.
    Anwar B, Bundjali B, Arcana IM (2015) Isolation of cellulose nanocrystals from bacterial cellulose produced from pineapple peel waste juice as culture medium. Procedia Chem 16:279–284CrossRefGoogle Scholar
  62. 62.
    George J, Sabapathi S (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45CrossRefGoogle Scholar
  63. 63.
    Kontturi E et al (2016) Degradation and crystallization of cellulose in hydrogen chloride vapor for high-yield isolation of cellulose nanocrystals. Angew Chem Int Ed 55(46):14455–14458CrossRefGoogle Scholar
  64. 64.
    Du H et al (2016) Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis. Cellulose 1–19Google Scholar
  65. 65.
    Chen L et al (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green ChemGoogle Scholar
  66. 66.
    Liu Y et al (2014) A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid. Carbohyd Polym 110:415–422CrossRefGoogle Scholar
  67. 67.
    Tang L-R et al (2011) Manufacture of cellulose nanocrystals by cation exchange resin-catalyzed hydrolysis of cellulose. Biores Technol 102(23):10973–10977CrossRefGoogle Scholar
  68. 68.
    Anderson SR et al (2014) Enzymatic preparation of nanocrystalline and microcrystalline cellulose. TAPPI J, vol 13, pp 35–41Google Scholar
  69. 69.
    Xu Y et al (2013) Feasibility of nanocrystalline cellulose production by endoglucanase treatment of natural bast fibers. Ind Crops Prod 51:381–384CrossRefGoogle Scholar
  70. 70.
    Chen X et al (2012) Controlled enzymolysis preparation of nanocrystalline cellulose from pretreated cotton fibers. BioRes 7(3):4237–4248Google Scholar
  71. 71.
    Amin KNM et al (2015) Production of cellulose nanocrystals via a scalable mechanical method. RSC Adv 5(70):57133–57140CrossRefGoogle Scholar
  72. 72.
    Lazko J et al (2016) Acid-free extraction of cellulose type I nanocrystals using Brønsted acid-type ionic liquids. Nanocomposites 2(2):65–75CrossRefGoogle Scholar
  73. 73.
    Tan XY, Hamid SBA, Lai CW (2015) Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis. Biomass Bioenerg 81:584–591CrossRefGoogle Scholar
  74. 74.
    Mao J et al (2015) Cellulose nanocrystals production in near theoretical yields by 1-butyl-3-methylimidazolium hydrogen sulfate ([Bmim] HSO4)–mediated hydrolysis. Carbohyd Polym 117:443–451CrossRefGoogle Scholar
  75. 75.
    Lazko J et al (2014) Well defined thermostable cellulose nanocrystals via two-step ionic liquid swelling-hydrolysis extraction. Cellulose 21(6):4195–4207CrossRefGoogle Scholar
  76. 76.
    Novo LP et al (2016) A study of the production of cellulose nanocrystals through subcritical water hydrolysis. Indus Crops ProdGoogle Scholar
  77. 77.
    Novo LP et al (2015) Subcritical water: a method for green production of cellulose nanocrystals. ACS Sustain Chem Eng 3(11):2839–2846CrossRefGoogle Scholar
  78. 78.
    Miller J (2015) Cellulose nanomaterials production-state of the industry.[cited 2017 05–12-2017]; Available from
  79. 79.
    Sun B et al (2015) Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive. Cellulose 22(2):1135–1146CrossRefGoogle Scholar
  80. 80.
    Visanko M et al (2014) Amphiphilic cellulose nanocrystals from acid-free oxidative treatment: Physicochemical characteristics and use as an oil—water stabilizer. Biomacromol 15(7):2769–2775CrossRefGoogle Scholar
  81. 81.
    Cao X et al (2012) Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers. Carbohyd Polym 90(2):1075–1080CrossRefGoogle Scholar
  82. 82.
    Chowdhury ZZ, Hamid SBA (2016) Preparation and characterization of nanocrystalline cellulose using ultrasonication combined with a microwave-assisted pretreatment process. BioRes 11(2):3397–3415Google Scholar
  83. 83.
    Tang Y et al (2014) Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis. Cellulose 21(1):335–346CrossRefGoogle Scholar
  84. 84.
    Lu Z et al (2013) Preparation, characterization and optimization of nanocellulose whiskers by simultaneously ultrasonic wave and microwave assisted. Biores Technol 146:82–88CrossRefGoogle Scholar
  85. 85.
    Lee H et al (2018) Improved thermal stability of cellulose nanofibrils using low-concentration alkaline pretreatment. Carbohyd Polym 181:506–513CrossRefGoogle Scholar
  86. 86.
    Turbak AF, Snyder FW, Sandberg KR et al (1983) Microfibrillated cellulose, a new cellulose product: Properties, uses, and commercial potential. J Appl Polym Sci: Appl Polym Symp (U S). ITT Rayonier Inc., Shelton, WAGoogle Scholar
  87. 87.
    Herrick FW et al (1983) Microfibrillated cellulose: Morphology and accessibility. J Appl Polym Sci: Appl Polym Symp (U S). ITT Rayonier Inc., Shelton, WAGoogle Scholar
  88. 88.
    Osong SH, Norgren S, Engstrand P (2016) Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review. Cellul 23(1):93–123CrossRefGoogle Scholar
  89. 89.
    Lee H, Sundaram J, Mani S et al (2017) Production of cellulose nanofibrils and their application to food: a review, in nanotechnology. Springer, pp 1–33Google Scholar
  90. 90.
    Rol F et al (2017) Pilot-Scale twin screw extrusion and chemical pretreatment as an energy-efficient method for the production of nanofibrillated cellulose at high solid content. ACS Sustain Chem Eng 5(8):6524–6531CrossRefGoogle Scholar
  91. 91.
    Yan H et al (2017) Synthesis of bacterial cellulose and bacterial cellulose nanocrystals for their applications in the stabilization of olive oil pickering emulsion. Food Hydrocolloids 72:127–135CrossRefGoogle Scholar
  92. 92.
    Sacui IA et al (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6(9):6127–6138CrossRefGoogle Scholar
  93. 93.
    Keshk SM (2014) Bacterial cellulose production and its industrial applications. J Bioprocess BiotechniquesGoogle Scholar
  94. 94.
    Ioelovich M (2013) Nanoparticles of amorphous cellulose and their properties. Am J Nanosci Nanotechnol 1(1):41–45CrossRefGoogle Scholar
  95. 95.
    Ioelovich M (2014) Peculiarities of cellulose nanoparticles. Tappi J 13(5):45–51Google Scholar
  96. 96.
    Quan S-L, Kang S-G, Chin I-J (2010) Characterization of cellulose fibers electrospun using ionic liquid. Cellulose 17(2):223–230CrossRefGoogle Scholar
  97. 97.
    Rebouillat S, Pla F (2013) State of the art manufacturing and engineering of nanocellulose: a review of available data and industrial applications. J Biomater Nanobiotechnol 4(02):165CrossRefGoogle Scholar
  98. 98.
    Nascimento SA, Rezende CA (2018) Combined approaches to obtain cellulose nanocrystals, nanofibrils and fermentable sugars from elephant grass. Carbohyd Polym 180:38–45CrossRefGoogle Scholar
  99. 99.
    Frone AN et al (2017) Isolation of cellulose nanocrystals from plum seed shells, structural and morphological characterization. Mater Lett 194:160–163CrossRefGoogle Scholar
  100. 100.
    Wang Z et al (2017) Reuse of waste cotton cloth for the extraction of cellulose nanocrystals. Carbohyd Polym 157:945–952CrossRefGoogle Scholar
  101. 101.
    Zhang K et al (2016) Extraction and comparison of carboxylated cellulose nanocrystals from bleached sugarcane bagasse pulp using two different oxidation methods. Carbohyd Polym 138:237–243CrossRefGoogle Scholar
  102. 102.
    Yu H-Y et al (2016) New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustain Chem. Eng 4(5):2632–2643CrossRefGoogle Scholar
  103. 103.
    Rohaizu R, Wanrosli W (2017) Sono-assisted TEMPO oxidation of oil palm lignocellulosic biomass for isolation of nanocrystalline cellulose. Ultrason Sonochem 34:631–639CrossRefGoogle Scholar
  104. 104.
    Ho TTT et al (2015) Nanofibrillation of pulp fibers by twin-screw extrusion. Cellul 22(1):421–433CrossRefGoogle Scholar
  105. 105.
    Nechyporchuk O, Pignon F, Belgacem MN (2015) Morphological properties of nanofibrillated cellulose produced using wet grinding as an ultimate fibrillation process. J Mater Sci 50(2):531–541CrossRefGoogle Scholar
  106. 106.
    Sirviö JA, Visanko M, Liimatainen H (2015) Deep eutectic solvent system based on choline chloride-urea as a pre-treatment for nanofibrillation of wood cellulose. Green Chem 17(6):3401–3406CrossRefGoogle Scholar
  107. 107.
    Oun AA, Rhim J-W (2016) Characterization of nanocelluloses isolated from Ushar (Calotropis procera) seed fiber: effect of isolation method. Mater Lett 168:146–150CrossRefGoogle Scholar
  108. 108.
    Lee H-R et al (2018) A new method to produce cellulose nanofibrils from microalgae and the measurement of their mechanical strength. Carbohyd Polym 180:276–285CrossRefGoogle Scholar
  109. 109.
    Valdebenito F et al (2017) On the nanofibrillation of corn husks and oat hulls fibres. Ind Crops Prod 95:528–534CrossRefGoogle Scholar
  110. 110.
    Lee H, Mani S (2017) Mechanical pretreatment of cellulose pulp to produce cellulose nanofibrils using a dry grinding method. Ind Crops Prod 104:179–187CrossRefGoogle Scholar
  111. 111.
    Park C-W et al (2017) Preparation and characterization of cellulose nanofibrils with varying chemical compositions. BioRes 12(3):5031–5044Google Scholar
  112. 112.
    Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7(2):303–315CrossRefGoogle Scholar
  113. 113.
    Meyabadi TF et al (2014) Spherical cellulose nanoparticles preparation from waste cotton using a green method. Powder Technology, vol 261, pp 232–240Google Scholar
  114. 114.
    Chen Y et al (2009) Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohyd Polym 76(4):607–615CrossRefGoogle Scholar
  115. 115.
    Abushammala H, Krossing I, Laborie MP (2015) Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohyd Polym 134:609–616CrossRefGoogle Scholar
  116. 116.
    Miao J et al (2016) One-pot preparation of hydrophobic cellulose nanocrystals in an ionic liquid. Cellulose 23(2):1209–1219CrossRefGoogle Scholar
  117. 117.
    Li W, Yue J, Liu S (2012) Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly (vinyl alcohol) composites. Ultrason Sonochem 19(3):479–485CrossRefGoogle Scholar
  118. 118.
    Elanthikkal S et al (2010) Cellulose microfibres produced from banana plant wastes: isolation and characterization. Carbohyd Polym 80(3):852–859CrossRefGoogle Scholar
  119. 119.
    Kumar A et al (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phy Chem 2(1):1–8Google Scholar
  120. 120.
    Haafiz MM et al (2014) Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Carbohyd Polym 103:119–125CrossRefGoogle Scholar
  121. 121.
    Khawas P, Deka SC (2016) Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. Carbohyd Polym 137:608–616CrossRefGoogle Scholar
  122. 122.
    Lu P, Hsieh YL (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohyd Polym 87(1):564–573CrossRefGoogle Scholar
  123. 123.
    Lu P, Hsieh YL (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohyd Polym 82(2):329–336CrossRefGoogle Scholar
  124. 124.
    Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohyd Polym 86(3):1291–1299CrossRefGoogle Scholar
  125. 125.
    Satyamurthy P et al (2011) Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohyd Polym 83(1):122–129CrossRefGoogle Scholar
  126. 126.
    Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod 37(1):93–99CrossRefGoogle Scholar
  127. 127.
    Sheltami RM et al (2012) Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohyd Polym 88(2):772–779CrossRefGoogle Scholar
  128. 128.
    Xiong R et al (2012) Comparing microcrystalline with spherical nanocrystalline cellulose from waste cotton fabrics. Cellulose 19(4):1189–1198CrossRefGoogle Scholar
  129. 129.
    Chandrahasa R, Rajamane NP, Jeyalakshmi et al (2014) Development of cellulose nanofibres from coconut husks. Int J Emerg Technol Adv Eng 4(4):2250–2259Google Scholar
  130. 130.
    Nascimento DM et al (2014) A novel green approach for the preparation of cellulose nanowhiskers from white coir. Carbohyd Polym 110:456–463CrossRefGoogle Scholar
  131. 131.
    Lamaming J et al (2015) Cellulose nanocrystals isolated from oil palm trunk. Carbohyd Polym 127:202–208CrossRefGoogle Scholar
  132. 132.
    Indarti E, Marwan, Wanrosli WD et al (2015) Thermal stability of oil palm empty fruit bunch (OPEFB) nanocrystalline cellulose: effects of post-treatment of oven drying and solvent exchange techniques. J Phys: Conf Ser 622(1):12–25Google Scholar
  133. 133.
    Chandra J, George N, Narayanankutty SK (2016) Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohyd Polym 142:158–166CrossRefGoogle Scholar
  134. 134.
    Segal LGJMA et al (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794CrossRefGoogle Scholar
  135. 135.
    Revol JF, Dietrich A, Goring DAI (1987) Effect of mercerization on the crystallite size and crystallinity index in cellulose from different sources. Can J Chem 65(8):1724–1725CrossRefGoogle Scholar
  136. 136.
    Cherian BM et al (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohyd Polym 86(4):1790–1798CrossRefGoogle Scholar
  137. 137.
    Cherian BM et al (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohyd Polym 81(3):720–725CrossRefGoogle Scholar
  138. 138.
    Rosa SM et al (2012) Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohyd Polym 87(2):1131–1138CrossRefGoogle Scholar
  139. 139.
    Rosa MF et al (2010) Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohyd Polym 81(1):83–92CrossRefGoogle Scholar
  140. 140.
    Silvério HA et al (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44:427–436CrossRefGoogle Scholar
  141. 141.
    Neto WPF et al (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue—soy hulls. Ind Crops Prod 42:480–488CrossRefGoogle Scholar
  142. 142.
    Neto WPF et al (2016) Comprehensive morphological and structural investigation of cellulose I and II nanocrystals prepared by sulphuric acid hydrolysis. RSC Adv 6(79):76017–76027CrossRefGoogle Scholar
  143. 143.
    Luykx DM et al (2008) A review of analytical methods for the identification and characterization of nano delivery systems in food. J Agric Food Chem 56(18):8231–8247CrossRefGoogle Scholar
  144. 144.
    Goldstein J et al (2012) Scanning electron microscopy and X-ray microanalysis: a text for biologists, materials scientists, and geologists. Springer Science and Business Media, (2)Google Scholar
  145. 145.
    Wang ZL (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B 104(6):1153–1175CrossRefGoogle Scholar
  146. 146.
    Wang QQ et al (2012) Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC. Cellulose 19(6):2033–2047CrossRefGoogle Scholar
  147. 147.
    Azubuike CP, Okhamafe AO (2012) Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs. Inter J Recycl Org Waste Agric 1:1–7CrossRefGoogle Scholar
  148. 148.
    Adel AM et al (2011) Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: Physicochemical Properties. Carbohyd Polym 83:676CrossRefGoogle Scholar
  149. 149.
    Lee KY et al (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol 105:15–27CrossRefGoogle Scholar
  150. 150.
    Yang S, Bai S, Wang Q (2018) Sustainable packaging biocomposites from polylactic acid and wheat straw: enhanced physical performance by solid state shear milling process. Compos Sci Technol 158:34–42CrossRefGoogle Scholar
  151. 151.
    Ashori A et al (2014) Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohyd Polym 102:369–375CrossRefGoogle Scholar
  152. 152.
    Abdul Khalil HPS et al (2016) A review on nanocellulosic fibres as new material for sustainable packaging: process and applications. Renew Sustain Energy Rev 64:823–836CrossRefGoogle Scholar
  153. 153.
    Frone AN et al (2013) Morphology and thermal properties of PLA–cellulose nanofibers composites. Carbohyd Polym 91(1):377–384CrossRefGoogle Scholar
  154. 154.
    Oksman K et al (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part A: Appl Sci Manuf 83:2–18CrossRefGoogle Scholar
  155. 155.
    Oksman K et al (2011) Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production. Biomass Bioenergy 35(1):146–152CrossRefGoogle Scholar
  156. 156.
    Lu Y et al (2017) Synthesis of new polyether titanate coupling agents with different polyethyleneglycol segment lengths and their compatibilization in calcium sulfate whisker/poly(vinyl chloride) composites. RSC Adv 7(50):31628–31640CrossRefGoogle Scholar
  157. 157.
    Poveda RL, Gupta N (2016) Mechanical properties of CNF/polymer composites carbon nanofiber reinforced polymer composites. Cham: Springer, pp 27–42Google Scholar
  158. 158.
    Kobe R et al (2016) Stretchable composite hydrogels incorporating modified cellulose nanofiber with dispersibility and polymerizability: Mechanical property control and nanofiber orientation. Polym 97:480–486CrossRefGoogle Scholar
  159. 159.
    Ng HM et al (2015) Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Composites Part B: Eng 75:176–200CrossRefGoogle Scholar
  160. 160.
    Kalia S et al (2011) Cellulose-Based Bio- and Nanocomposites: a review. Int J Polym SciGoogle Scholar
  161. 161.
    Kalia S et al (2014) Nanofibrillated cellulose: Surface modification and potential applications. Colloid Polym Sci 292(1):5–31CrossRefGoogle Scholar
  162. 162.
    Ishii D, Saito T, Isogai A (2011) viscoelastic evaluation of average length of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 12(3):548–550CrossRefGoogle Scholar
  163. 163.
    Qing Y et al (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohyd Polym 97(1):226–234CrossRefGoogle Scholar
  164. 164.
    Missoum K, Belgacem M, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Mater 6(5):1745CrossRefGoogle Scholar
  165. 165.
    Ahmadi M et al (2017) Topochemistry of cellulose nanofibers resulting from molecular and polymer grafting. Cellulose 24(5):2139–2152CrossRefGoogle Scholar
  166. 166.
    Roy D et al (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38(7):2046–2064CrossRefGoogle Scholar
  167. 167.
    Safdari F et al (2017) Enhanced properties of poly(ethylene oxide)/cellulose nanofiber biocomposites. Cellulose 24(2):755–767CrossRefGoogle Scholar
  168. 168.
    Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2):171–180CrossRefGoogle Scholar
  169. 169.
    Morán JI et al (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1):149–159CrossRefGoogle Scholar
  170. 170.
    Fahma F et al (2011) Effect of pre-acid-hydrolysis treatment on morphology and properties of cellulose nanowhiskers from coconut husk. Cellulose 18:443–450CrossRefGoogle Scholar
  171. 171.
    Brito BS et al (2012) Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose 19(5):1527–1536CrossRefGoogle Scholar
  172. 172.
    Fan JS, Li YH (2012) Maximizing the yield of nanocrystalline cellulose from cotton pulp fiber. Carbohyd Polym 88(4):1184–1188CrossRefGoogle Scholar
  173. 173.
    Fortunati E et al (2013) Extraction of cellulose nanocrystals from Phormium tenax fibres. J Polym Environ 21(2):319–328CrossRefGoogle Scholar
  174. 174.
    Morais JPS et al (2013) Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohyd Polym 91(1):229–235CrossRefGoogle Scholar
  175. 175.
    Santos RMD et al (2013) Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Ind Crops Prod 50:707–714CrossRefGoogle Scholar
  176. 176.
    Espinosa CS et al (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14(4):1223–1230CrossRefGoogle Scholar
  177. 177.
    Le Normand M, Moriana R, Ek M (2014) Isolation and characterization of cellulose nanocrystals from spruce bark in a biorefinery perspective. Carbohyd Polym 111:979–987CrossRefGoogle Scholar
  178. 178.
    Mueller S, Weder C, Foster EJ (2014) Isolation of cellulose nanocrystals from pseudostems of banana plants. RSC Adv 4(2):907–915CrossRefGoogle Scholar
  179. 179.
    Bettaieb F et al (2015) Mechanical and thermal properties of Posidonia oceanica cellulose nanocrystal reinforced polymer. Carbohyd Polym 123:99–104CrossRefGoogle Scholar
  180. 180.
    Devi RR (2015) Fabrication of cellulose nanocrystals from agricultural compost. Compost Sci Utilization 23(2):104–116CrossRefGoogle Scholar
  181. 181.
    Mohamed MA et al (2015) Physicochemical properties of “green” nanocrystalline cellulose isolated from recycled newspaper. RSC Adv 5(38):29842–29849CrossRefGoogle Scholar
  182. 182.
    Dungani R et al (2016) Preparation and fundamental characterization of cellulose nanocrystal from oil palm fronds biomass. J Poly Environ 1:1–9Google Scholar
  183. 183.
    Salajková M, Berglund LA, Zhou Q (2012) Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. J Mater Chem 22(37):19798–19805CrossRefGoogle Scholar
  184. 184.
    Pan M, Zhou X, Chen M (2013) Cellulose nanowhiskers isolation and properties from acid hydrolysis combined with high pressure homogenization. BioRes 8(1):933–943CrossRefGoogle Scholar
  185. 185.
    Savadekar NR et al (2015) Preparation of cotton linter nanowhiskers by high-pressure homogenization process and its application in thermoplastic starch. Appl Nanosci 5(3):281–290CrossRefGoogle Scholar
  186. 186.
    Beltramino F et al (2015) Increasing yield of nanocrystalline cellulose preparation process by a cellulase pretreatment. Biores technol 192:574–581CrossRefGoogle Scholar
  187. 187.
    Beltramino F et al (2016) Optimization of sulfuric acid hydrolysis conditions for preparation of nanocrystalline cellulose from enzymatically pretreated fibers. Cellulose 23(3):1777–1789CrossRefGoogle Scholar
  188. 188.
    Camargo LA et al (2016) Feasibility of manufacturing cellulose nanocrystals from the solid residues of second-generation ethanol production from sugarcane bagasse. BioEnergy Res 9(3):894–906CrossRefGoogle Scholar
  189. 189.
    Zhao Y et al (2015) Tunicate cellulose nanocrystals: preparation, neat films and nanocomposite films with glucomannans. Carbohydr Polym 117:286–296CrossRefGoogle Scholar
  190. 190.
    Csiszar E et al (2016) The effect of low frequency ultrasound on the production and properties of nanocrystalline cellulose suspensions and films. Ultrason Sonochem 31:473–480CrossRefGoogle Scholar
  191. 191.
    Cudjoe E et al (2017) Miscanthus Giganteus: a commercially viable sustainable source of cellulose nanocrystals. Carbohyd Polym 155:230–241CrossRefGoogle Scholar
  192. 192.
    Hamid SBA et al (2016) Synergic effect of tungstophosphoric acid and sonication for rapid synthesis of crystalline nanocellulose. Carbohyd Polym 138:349–355CrossRefGoogle Scholar
  193. 193.
    Li Y et al (2016) Facile extraction of cellulose nanocrystals from wood using ethanol and peroxide solvothermal pretreatment followed by ultrasonic nanofibrillation. Green Chem 18(4):1010–1018CrossRefGoogle Scholar
  194. 194.
    Lu Q et al (2014) Preparation and characterization of cellulose nanocrystals via ultrasonication-assisted FeCl3-catalyzed hydrolysis. Cellulose 21(5):3497–3506CrossRefGoogle Scholar
  195. 195.
    Lim YH et al (2016) NanoCrystalline cellulose isolated from oil palm empty fruit bunch and its potential in cadmium metal removal. In: MATEC web of conferences, vol 59. EDP SciencesGoogle Scholar
  196. 196.
    Sun B et al (2016) Single-step extraction of functionalized cellulose nanocrystal and polyvinyl chloride from industrial wallpaper wastes. Ind Crops Prod 89:66–77CrossRefGoogle Scholar
  197. 197.
    Tang Y et al (2015) Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication. Carbohyd Polym 125:360–366CrossRefGoogle Scholar
  198. 198.
    Yu H et al (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1(12):3938–3944CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • M. Hazwan Hussin
    • 1
    Email author
  • Djalal Trache
    • 2
  • Caryn Tan Hui Chuin
    • 1
  • M. R. Nurul Fazita
    • 3
  • M. K. Mohamad Haafiz
    • 3
  • Md. Sohrab Hossain
    • 3
  1. 1.Materials Technology Research Group (MaTReC), School of Chemical SciencesUniversiti Sains MalaysiaMindenMalaysia
  2. 2.UER Procédés Energétiques, Ecole Militaire PolytechniqueBordj El-BahriAlgeria
  3. 3.School of Industrial TechnologyUniversiti Sains MalaysiaMindenMalaysia

Personalised recommendations