Sustainable Polymer Composites and Nanocomposites pp 593-628 | Cite as
Rubber Clay Nanocomposites
Abstract
The use of nanofillers allows the development of nanocomposites with improved properties and novel applications. The technological goal is possible due to the new compounding method that allows a particle dispersion in the nanometer scale increasing the specific surface area.
List of Abbreviations
- AFM
Atomic force microscopy
- APTES
(3—aminopropyl) triethoxysilane
- CB
Carbon black
- CEC
Cation exchange capacity
- CIIR
Chlorobutyl rubber
- CL
Concentrated Natural Rubber Latex
- Dim-Br
o-xylylenebis (triphenylphosphoniumbromide)
- DMA
Dynamic mechanical analysis
- DSC
Differential scanning calorimetry
- DTG
Derivative thermogravimetric analysis
- EDX
Electron dispersive X-ray spectroscopy
- EG
Expanded graphite
- EPDM
Ethylene propylene diene rubber
- FL
Fresh Natural Rubber Latex
- FTIR
Fourier transform infrared
- Hal
Hallosyte
- HDTMA+
Hexadecyl trimethylammonium
- IIR
Isobutylene isoprene rubber
- MH
Maximum torque
- Mt
Montmorillonite
- NBR
Acrylonitrile butadiene rubber
- NK
Nanokaolin
- NR
Natural rubber
- OC
Organoclay
- ODTMA+
Octadecyl trimethylammonium
- OMt
Organomodified montmorillonite
- PAS
Positron annhilation lifetime spectroscopy
- PA6
Polyamide 6
- phr
per hundred of rubber
- PLA
Olylactide acid
- SANS
Small angle neutrón scattering
- SAXS
Small Angle X-Ray Scattering
- SBR
Styrene Butadiene Rubber
- SEM
Scanning electron microscopy
- SI
Silica
- tan δ
Loss tangent
- tc90
Cure time
- TEM
Transmission electron microscopy
- Tg
Glass transition temperature
- TGA
Thermogravimetric analysis
- ts2
Scorch time
- WAXS
Wide Angle X-Ray Scattering
- Wc
Water content
- XRD
X-ray diffraction
Notes
Acknowledgements
Authors wish to thank the financial support from the National Agency of Scientific and Technological Promotion (ANPCyT PICT-2015-0027) of the Minister of Science and Technology and Productive Innovation (MinCyT) of Argentina.
References
- 1.Chao CC, Lin GG, Tsai HC, Lee YL, Chang PH, Cheng WT, Hsiue GH (2015) Isobutylene-isoprene rubber/layered silicate nanocomposites prepared using latex method: direct casting versus melt mixing after coagulation. J Reinf Plast Compos 34(21):1791–1803Google Scholar
- 2.Conzatti L, Stagnaro P, Colucci G, Bongiovanni R, Priola A, Lostritto A, Galimberti M (2012) The clay mineral modifier as the key to steer the properties of rubber nanocomposites. Appl Clay Sci 61:14–21Google Scholar
- 3.Gui Y, Zheng J, Ye X, Han D, Xi M, Zhang L (2016) Preparation and performance of silica/SBR masterbatches with high silica loading by latex compounding method. Compos Part B Eng 85:130–139Google Scholar
- 4.Maiti M, Bhattacharya M, Bhowmick AK (2008) Elastomer Nanocomposites. Rubber Chem Technol 81(3):384–469Google Scholar
- 5.Osman AF, Abdul Hamid AR, Rakibuddin, M, Khung Weng G, Ananthakrishnan R, Ghani, SA, Mustafa Z (2017) Hybrid silicate nanofillers: impact on morphology and performance of EVA copolymer upon in vitro physiological fluid exposure. J Appl Polym Sci 134(12)Google Scholar
- 6.George SC, Rajan R, Aprem AS, Thomas S, Kim SS (2016) The fabrication and properties of natural rubber-clay nanocomposites. Polym Test 51:165–173Google Scholar
- 7.Pal K, Pal SK, Das CK, Kim JK (2010) Influence of fillers on NR/SBR/XNBR blends. Morphology and wear. Tribol Int 43(8):1542–1550Google Scholar
- 8.Rezende CA, Bragança FC, Doi TR, Lee LT, Galembeck F, Boué F (2010) Natural rubber-clay nanocomposites: mechanical and structural properties. Polym (Guildf) 51(16):3644–3652Google Scholar
- 9.Zhang Y, Liu Q, Zhang S, Zhang Y, Cheng H (2015) Gas barrier properties and mechanism of kaolin/styrene-butadiene rubber nanocomposites. Appl Clay Sci 111:37–43Google Scholar
- 10.Przybyłek M, Bakar M, Mendrycka M, Kosikowska U, Malm A, Worzakowska M, Szymborski T, Kędra-Królik K (2017) Rubber elastomeric nanocomposites with antimicrobial properties. Mater Sci Eng, C 76:269–277 Google Scholar
- 11.Choi SS (2002) Difference in bound rubber formation of silica and carbon black with styrene-butadiene rubber. Polym Adv Technol 13(6):466–474Google Scholar
- 12.Alex R (2010) Nanofillers in rubber-rubber blends. In: Thomas S, Stephen R (eds) Rubber nanocomposites: preparation, properties and applications. Wiley, Chichester, UK, pp 209–234Google Scholar
- 13.Hashim AS, Azahari B, Ikeda Y, Kohjiya S (1998) The effect of bis (3-triethoxysilylpropyl) tetrasulfide on silica reinforcement of styrene—butadiene rubber. Rubber Chem Technol 71(2):289–299Google Scholar
- 14.Gatos KG, Karger-Kocsis J (2010) Rubber/clay nanocomposites: preparation, properties and applications. In: Thomas S, Stephen R (eds) Rubber nanocomposites: preparation, properties and applications. Wiley, Chichester, UK, pp 169–190Google Scholar
- 15.ten Brinke JW, Debnath SC, Reuvekamp LAEM, Noordermeer JWM (2003) Mechanistic aspects of the role of coupling agents in silica-rubber composites. Compos Sci Technol 63(8):1165–1174Google Scholar
- 16.Rattanasom N, Saowapark T, Deeprasertkul C (2007) Reinforcement of natural rubber with silica/carbon black hybrid filler. Polym Test 26(3):369–377Google Scholar
- 17.Liu Q, Zhang Y, Xu H (2008) Properties of vulcanized rubber nanocomposites filled with nanokaolin and precipitated silica. Appl Clay Sci 42(1–2):232–237Google Scholar
- 18.Galimberti M, Agnelli S, Cipolletti, V (2016) Hybrid filler systems in rubber nanocomposites. Elsevier LtdGoogle Scholar
- 19.Siririttikrai N, Thanawan S, Suchiva K, Amornsakchai T (2017) Comparative study of natural rubber/clay nanocomposites prepared from fresh or concentrated latex. Polym Test 63:244–250Google Scholar
- 20.Usha Devi, KS, Ponnamma, D, Causin, V, Maria HJ, Thomas S (2015) Enhanced morphology and mechanical characteristics of clay/styrene butadiene rubber nanocomposites. Appl Clay Sci 114, 568–576Google Scholar
- 21.Nawani P, Burger C, Rong L, Hsiao BS, Tsou AH (2015) Structure and permeability relationships in polymer nanocomposites containing carbon black and organoclay. Polym (United Kingdom) 64:19–28Google Scholar
- 22.Botana A, Mollo M, Eisenberg P, Torres Sanchez RM (2010) Effect of modified montmorillonite on biodegradable PHB nanocomposites. Appl Clay Sci 47(3–4):263–270Google Scholar
- 23.Pavlidou S, Papaspyrides CD (2008) A review on polymer-layered silicate nanocomposites. Prog Polym Sci 33(12):1119–1198Google Scholar
- 24.Kievani MB, Edrak M (2015) Synthesis, characterization and assessment thermal properties of clay based nanopigments. Front Chem Sci Eng 9:40–45 Google Scholar
- 25.Galimberti M, Senatore S, Lostritto A, Giannini L, Conzatti L, Costa G, Guerra G (2009) Reinforcement of diene elastomers by organically modified layered silicates. E-Polymers 57:1–16Google Scholar
- 26.Marques FADM, Angelini R, Ruocco G, Ruzicka B (2017) Isotopic effect on the gel and glass formation of a charged colloidal clay: laponite. J Phys Chem B 121(17):4576–4582Google Scholar
- 27.Ambre A, Jagtap R, Dewangan B (2009) ABS nanocomposites containing modified clay. J Reinf Plast Compos 28(3):343–352Google Scholar
- 28.Bianchi AE, Fernández M, Pantanetti M, Viña R, Torriani I, Sánchez RMT, Punte G (2013) ODTMA + and HDTMA + organo-montmorillonites characterization: new insight by WAXS, SAXS and surface charge. Appl Clay Sci 83–84:280–285Google Scholar
- 29.Daitx TS, Carli LN, Crespo JS, Mauler RS (2015) Effects of the organic modification of different clay minerals and their application in biodegradable polymer nanocomposites of PHBV. Appl Clay Sci 115:157–164Google Scholar
- 30.Zhuang G, Gao J, Chen H, Zhang, Z (2018) A new one-step method for physical purification and organic modification of sepiolite. Appl. Clay Sci 153(November 2017), 1–8Google Scholar
- 31.Zhou F, Yan C, Zhang Y, Tan J, Wang H, Zhou S, Pu S (2016) Purification and defibering of a Chinese sepiolite. Appl Clay Sci 125, 119–126Google Scholar
- 32.Milošević M, Logar M, Kaluderović L, Jelić I (2017) Characterization of clays from Slatina (Ub, Serbia) for potential uses in the ceramic industry. Energy Proc 125:650–655Google Scholar
- 33.Gamoudi S, Srasra E (2017) Characterization of Tunisian clay suitable for pharmaceutical and cosmetic applications. Appl Clay Sci 146(May):162–166Google Scholar
- 34.Peyne J, Gharzouni A, Sobrados I, Rossignol S (2018) Identifying the differences between clays used in the brick industry by various methods: iron extraction and NMR spectroscopy. Appl Clay Sci (October 2017):0–1Google Scholar
- 35.Ezquerro CS, Ric GI, Miñana CC, Bermejo JS (2015) Characterization of montmorillonites modified with organic divalent phosphonium cations. Appl Clay Sci 111:1–9Google Scholar
- 36.Alves JL de T. V. e. Rosa P, Morales, AR (2017) Evaluation of organic modification of montmorillonite with ionic and nonionic surfactants. Appl Clay Sci 150(June):23–33Google Scholar
- 37.Hojiyev R, Ulcay Y, Çelik MS (2017) Development of a clay-polymer compatibility approach for nanocomposite applications. Appl Clay Sci 146(April):548–556Google Scholar
- 38.Sookyung U, Nakason C, Venneman N, Thaijaroend W (2016) Influence concentration of modifying agent on properties of natural rubber/organoclay nanocomposites. Polym Test 54:223–232Google Scholar
- 39.Soares BG, Ferreira SC, Livi S (2017) Modification of anionic and cationic clays by zwitterionic imidazolium ionic liquid and their effect on the epoxy-based nanocomposites. Appl Clay Sci 135:347–354Google Scholar
- 40.Verdejo R, Lopez-Manchado MA, Valentini L, Kenny JM (2010) Carbon nanotube reinforced rubber composites. In: Thomas S, Stephen R (eds) Rubber nanocomposites: preparation, properties and applications. Wiley, Chichester, UK, pp 147–162Google Scholar
- 41.Carli LN, Roncato CR, Zanchet A, Mauler RS, Giovanela M, Brandalise RN, Crespo JS (2011) Characterization of natural rubber nanocomposites filled with organoclay as a substitute for silica obtained by the conventional two-roll mill method. Appl Clay Sci 52(1–2):56–61Google Scholar
- 42.Praveen S, Chattopadhyay PK, Albert P, Dalvi VG, Chakraborty BC, Chattopadhyay S (2009) Synergistic effect of carbon black and nanoclay fillers in styrene butadiene rubber matrix: development of dual structure. Compos Part A Appl Sci Manuf 40(3):309–316Google Scholar
- 43.Sadek EM, El-Nashar DE, Ahmed SM (2015) Effect of organoclay reinforcement on the curing characteristics and technological properties of styrene-butadiene rubber. Polym Compos 36(7):1293–1302Google Scholar
- 44.Youssef HA, Abdel-Monem YK, Diab WW (2017) Effect of gamma irradiation on the properties of natural rubber latex and styrene-butadiene rubber latex nanocomposites. Polym Compos 38(2):E189–E198Google Scholar
- 45.Liu J, Li X, Xu L, Zhang P (2016) Investigation of aging behavior and mechanism of nitrile-butadiene rubber (NBR) in the accelerated thermal aging environment. Polym Test 54(2016):59–66Google Scholar
- 46.Xue X, Yin Q, Jia H, Zhang X, Wen Y, Ji Q, Xu Z (2017) Enhancing mechanical and thermal properties of styrene-butadiene rubber/carboxylated acrylonitrile butadiene rubber blend by the usage of graphene oxide with diverse oxidation degrees. Appl Surf Sci 423:584–591Google Scholar
- 47.Costa FR, Pradhan S, Wagenknecht U, Bhowmick AK, Heinrich G (2010) XNBR/LDH nanocomposites: effect of vulcanization and organic modifier on nanofiller dispersion and strain-induced crystallization. J Polym Sci, Part B: Polym Phys 48(22):2302–2311Google Scholar
- 48.de Sousa F, Mantovani G, Scuracchio C (2011) Mechanical properties and morphology of NBR with different clays. Polym Testing 30:819–825Google Scholar
- 49.Yu Y, Gu Z, Song G, Li P, Li H, Liu W (2011) Structure and properties of organo-montmorillonite/nitrile butadiene rubber nanocomposites prepared from latex dispersions. Appl Clay Sci 52(4):381–385Google Scholar
- 50.Ma Y, Li Q-F, Zhang L-Q, Wu Y-P (2006) Role of stearic acid in preparing EPDM/clay nanocomposites by melt compounding. Polym J 39(1):48–54Google Scholar
- 51.Usuki A, Tukigase A, Kato M (2002) Preparation and properties of EPDM-clay hybrids. J Appl Polym Sci 43:2185–2189Google Scholar
- 52.Zheng H, Zhang Y, Peng Z, Zhang Y (2004) Influence of clay modification on the structure and mechanical properties of EPDM/montmorillonite nanocomposites. Polym Test 23(2):217–223Google Scholar
- 53.Chang YW, Yang Y, Ryu S, Nah C (2002) Preparation and properties of EPDM/organomontmorillonite hybrid nanocomposites. Polym Int 51(4):319–324Google Scholar
- 54.Zhang F, Zhao Q, Liu T, Lei Y, Chen C (2018) Preparation and relaxation dynamics of ethylene–propylene–diene rubber/clay nanocomposites with crosslinking interfacial design. J Appl Polym Sci 135(1):1–8Google Scholar
- 55.Mansilla MA, Valentín JL, López-Manchado MA, González-Jiménez A, Marzocca AJ (2016) Effect of entanglements in the microstructure of cured NR/SBR blends prepared by solution and mixing in a two-roll mill. Eur Polym J 81:365–375Google Scholar
- 56.Hess WM, Herd CR, Vegvari PC (1993) Characterization of immiscible elastomer blends. 330–372Google Scholar
- 57.Groves S (1998) Crosslink density distributions in NR/BR blends: effect of cure temperature and time. Rubber Chem Technol 44:958–965Google Scholar
- 58.Maroufkhani M, Katbab AA, Zhang J (2018) Manipulation of the properties of PLA nanocomposites by controlling the distribution of nanoclay via varying the acrylonitrile content in NBR rubber. Polym Test 65:313–321Google Scholar
- 59.Rajasekar R, Pal K, Heinrich G, Das A, Das CK (2009) Development of nitrile butadiene rubber-nanoclay composites with epoxidized natural rubber as compatibilizer. Mater Des 30(9):3839–3845Google Scholar
- 60.Kanny K, Mohan TP (2017) Rubber nanocomposites with nanoclay as the filler. In: Thomas S, Maria HJ (eds) Progress in rubber nanocomposites. Woodhead Publishing, Duxford, United Kingdom, pp 153–177Google Scholar
- 61.Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11), 1539–1641Google Scholar
- 62.Theng BKG (2012) Polymer-clay nanocomposites, 2nd ed., vol. 4. Elsevier B.VGoogle Scholar
- 63.Wang LL, Zhang LQ, Tian M (2012) Mechanical and tribological properties of acrylonitrile-butadiene rubber filled with graphite and carbon black. Mater Des 39:450–457Google Scholar
- 64.Varghese S, Karger-Kocsis J (2003) Natural rubber-based nanocomposites by latex compounding with layered silicates. Polym (Guildf) 44(17):4921–4927Google Scholar
- 65.Brantseva TV, Antonov SV, Gorbunova IY (2018) Adhesion properties of the nanocomposites filled with aluminosilicates and factors affecting them: a review. Int J Adhes Adhes 82:263–281Google Scholar
- 66.Fawaz J, Mittal V (2015) Synthesis of polymer nanocomposites: review of various techniques. In: Mittal V (ed) Synthesis techniques for polymer nanocomposites, 1st edn. Wiley-VCH, Weinheim, pp 1–30Google Scholar
- 67.Ponnamma D Maria HJ, Chandra AK, Thomas S (2013) Rubber nanocomposites: latest trends and concepts. In: Visakh PM, Thomas S, Chandra A (ed) Advances in elastomers II. Advanced structured materials, vol. 12, April, Springer, Berlin, Heidelberg, pp 69–107Google Scholar
- 68.Distler D, Neto WS (2017) Machado F emulsion polymerization. In: Reference module in materials science and materials engineering, June, Elsevier, pp 35–56Google Scholar
- 69.Tan J, Wang X, Luo Y, Jia D (2012) Rubber clay nanocomposites by combined latex compounding. pp 825–831Google Scholar
- 70.Chaudhari CV, Dubey KA, Bhardwaj YK, Sabharwal S (2012) Radiation processed styrene-butadiene rubber/ethylene-propylene diene rubber/multiple-walled carbon nanotubes nanocomposites: effect of MWNT addition on solvent permeability behavior. J Macromol Sci Part B Phys 51(5):839–859Google Scholar
- 71.Dubey KA, Bhardwaj YK, Chaudhari CV, Bhattacharya S, Gupta SK, Sabharwal S (2006) Radiation effects on SBR–EPDM blends: a correlation with blend morphology. J Polym Sci, Part B: Polym Phys 44(12):1676–1689Google Scholar
- 72.Shoushtari Zadeh Naseri A, Jalali-Arani A (2015) A comparison between the effects of gamma radiation and sulfur cure system on the microstructure and crosslink network of (styrene butadiene rubber/ethylene propylene diene monomer) blends in presence of nanoclay. Radiat Phys Chem 115, 68–74Google Scholar
- 73.Satyanarayana MS, Bhowmick AK, Dinesh Kumar K (2016) Preferentially fixing nanoclays in the phases of incompatible carboxylated nitrile rubber (XNBR)-natural rubber (NR) blend using thermodynamic approach and its effect on physico mechanical properties. Polym (United Kingdom) 99:21–43Google Scholar
- 74.Bandyopadhyay A, Thakur V, Pradhan S, Bhowmick AK (2010) Nanoclay distribution and its influence on the mechanical properties of rubber blends. J Appl Polym Sci 115:1237–1246Google Scholar
- 75.Ebrahimi Jahromi A, Ebrahimi Jahromi HR, Hemmati F, Saeb MR, Goodarzi V, Formela K (2016) Morphology and mechanical properties of polyamide/clay nanocomposites toughened with NBR/NBR-g-GMA: a comparative study. Compos Part B Eng 90, 478–484Google Scholar
- 76.Wang C, Su JX, Li J, Yang H, Zhang Q, Du RN, Fu Q (2006) Phase morphology and toughening mechanism of polyamide 6/EPDM-g-MA blends obtained via dynamic packing injection molding. Polym (Guildf) 47(9):3197–3206Google Scholar
- 77.Yang R, Song Y, Zheng Q (2017) Payne effect of silica-filled styrene-butadiene rubber. Polym (United Kingdom) 116:304–313Google Scholar
- 78.Zachariah AK, Chandra AK, Mohammed PK, Parameswaranpillai J, Thomas S (2016) Experiments and modeling of non-linear viscoelastic responses in natural rubber and chlorobutyl rubber nanocomposites. Appl Clay Sci 123:1–10Google Scholar
- 79.Zachariah AK Transport properties of polymeric membranes: gas permeability and theoretical modeling of elastomers and its nanocomposites. Chapter 21, p 441Google Scholar
- 80.Mohan TP, Kuriakose J, Kanny K (2012) Water uptake and mechanical properties of natural rubber-styrene butadine rubber (nr-sr)—nanoclay composites. J Ind Eng Chem 18(3):979–985Google Scholar
- 81.Wang ZF, Wang B, Qi N, Zhang HF, Zhang LQ (2005) Polymer, 46(3):719–724Google Scholar
- 82.Qureshi MN, Qammar H (2010) Mill processing and properties of rubber-clay nanocomposites. Mater Sci Eng, C 30(4):590–596Google Scholar
- 83.Mathew G, Rhee JM, Lee YS, Park DH, Nah C (2008) Cure kinetics of ethylene acrylate rubber/clay nanocomposites. J Ind Eng Chem 14(1):60–65Google Scholar
- 84.Zhang W, Ma Y, Xu Y, Wang C, Chu F (2013) Lignocellulosic ethanol residue-based lignin-phenol-formaldehyde resin adhesive. Int J Adhes Adhes 40(2013):11–18Google Scholar
- 85.Woo CS, Kim WD, Do Kwon J (2008) A study on the material properties and fatigue life prediction of natural rubber component 483–484(1–2) C, 376–381Google Scholar
- 86.Brantseva TV, Antonov SV, Gorbunova, IY Adhesion properties of the nanocomposites filled with aluminosilicates and factors affecting them: a review. Int J Adhes Adhes 82(December 2017):263–281, 2018Google Scholar
- 87.Ahsan T (2007) Composition of bulk filler and epoxy-clay nanocomposite; U.S. Patent 7163973Google Scholar
- 88.Long-acting waterborne nanometer attapulgite clay/epoxy anticorrosive coating material and preparing method thereof, Chinese patent CN 102676028A, 2012Google Scholar
- 89.Gazeley KF, Wake WC (1990) Natural rubber adhesives Handbook of adhesives 3rd ed. Skeist I (ed) Chapman & Hall, NY, pp 167–84Google Scholar
- 90.Unalan IU, Cerri Gi, Marcuzzo E, Cozzolino CA, Farris S (2014) Nanocomposite films and coatings using inorganic nanobuilding blocks (NBB): current applications and future opportunities in the food packaging sector. RSC Adv 4:29393Google Scholar