Advertisement

Extraction of Cellulose Nanofibers and Their Eco/Friendly Polymer Composites

  • Stephen C. AgwunchaEmail author
  • Chioma G. Anusionwu
  • Shesan J. Owonubi
  • E. Rotimi Sadiku
  • Usman A. Busuguma
  • I. David Ibrahim
Chapter

Abstract

Cellulose nanosize particles extracted from cellulose fibers are now very important materials for almost all aspect of human endeavours. From medicals to the drug, from industrial applications to domestic uses, they have become part of our daily lives. This is because CNP has been found to possess the properties required to replace many of the traditionally known materials such as glass, metals, concrete, synthetic plastics and fibers. The major advantages of CNPs are that they are from natural sources that are renewable; they are environmentally-friendly; they are cost-effective and biodegradable. No doubt, cellulose nanomaterials have come to stay. However, their performance or extent of application is predicated on the source of the cellulose fibers and the process of their extraction and isolation. Since the molecular units of the cellulose fibers are the same, then their extraction processes must be tailored to suit the planned application. To this end, understanding the steps, processes and available methods for the extraction and isolation of CNPs will lead to wider imaginations of possible applications. As of today, the application of these CNPs is at all-time high.

Keywords

Cellulose nanoparticles Nanocellulose extraction Acid hydrolysis Cellulose bleaching Nanocellulose composites Nanocellulose applications 

References

  1. 1.
    Lee HR, Kim K, Mun SC, Chang YK, Choi SQ (2018) A new method to produce cellulose nanofibrils from microalgae and the measurement of their mechanical strength. Carbohyd Polym 180:276–285CrossRefGoogle Scholar
  2. 2.
    Mondragon G, Fernandes S, Retegi A, Pena C, Algar I, Eceiza A, Arbelaiz A (2014) A common strategy to extracting cellulose nanoentities from different plants. Ind Crops Prod 55:140–148CrossRefGoogle Scholar
  3. 3.
    Liu Z, Li X, Xie W, Deng H (2017) Extraction, isolation and characterization of nanocrystalline cellulose from industrial kelp (Laminaria japonica) waste. Carbohyd Polym 173:353–359CrossRefGoogle Scholar
  4. 4.
    Wang M, Bi W, Huang X, Chen DDY (2016) Ball mill assisted rapid mechanochemical extraction method for natural products from plants. J Chromatogr A 1449:8–16CrossRefGoogle Scholar
  5. 5.
    Ling Z, Zhang X, Yang G, Takabe K, Xu F (2018) Nanocrystals of cellulose allomorphs have different adsorption of cellulase and subsequent degradation. Ind Crops Prod 112:541–549CrossRefGoogle Scholar
  6. 6.
    Robles E, Fernández-Rodríguez J, Barbosa AM, Gordobil O, Carreno NLV, Labidi J (2018) Production of cellulose nanoparticles from blue agave waste treated with environmentally friendly processes. Carbohydr Polym. Available online 6 Jan 2018. ISSN 0144-8617Google Scholar
  7. 7.
    Das AM, Hazarika MP, Goswami M, Yadav A, Khound P (2016) Extraction of cellulose from agricultural waste using Montmorillonite K-10/LiOH and its conversion to renewable energy: Biofuel by using Myrothecium gramineum. Carbohyd Polym 141:20–27CrossRefGoogle Scholar
  8. 8.
    Guerrero LC, Guzmán SS, Mendoza JS, Flores CA, Camacho OP (2018) Eco-friendly isolation of cellulose nanoplatelets through oxidation under mild conditions. Carbohyd Polym 181:642–649CrossRefGoogle Scholar
  9. 9.
    Manzato L, Rabelo LCA, de Souza SM, da Silva CG, Sanches EA, Rabelo D, Mariuba LAM, Simonsen J (2017) New approach for extraction of cellulose from tucumã’s endocarp and its structural characterization. J Mol Struct 1143:229–234CrossRefGoogle Scholar
  10. 10.
    Liu L, Ju M, Li W, Jiang Y (2014) Cellulose extraction from Zoysia japonica pretreated by alumina-doped MgO in AMIMCl. Carbohyd Polym 113:1–8CrossRefGoogle Scholar
  11. 11.
    Harini K, Mohan CC, Ramya K, Karthikeyan K, Sukumar M (2018) Effect of Punica granatum peel extracts on antimicrobial properties in Walnut shell cellulose reinforced Bio-thermoplastic starch films from cashew nut shells. Carbohyd Polym 184:231–242CrossRefGoogle Scholar
  12. 12.
    Bali G, Khunsupat R, Akinosho H, Payyavula RS, Samuel R, Tuskan GA, Kalluri UC, Ragauskas AJ (2016) Characterization of cellulose structure of Populus plants modified in candidate cellulose biosynthesis genes. Biomass Bioenerg 94:146–154CrossRefGoogle Scholar
  13. 13.
    Nascimento SA, Rezende CA (2018) Combined approaches to obtain cellulose nanocrystals, nanofibrils and fermentable sugars from elephant grass. Carbohyd Polym 180:38–45CrossRefGoogle Scholar
  14. 14.
    Faruk O, Bledzki AK, Fink HP (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596CrossRefGoogle Scholar
  15. 15.
    Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227CrossRefGoogle Scholar
  16. 16.
    Rezende CA, de Lima MA, Maziero P, de Azevedo ER, Garcia W, Polikarpov I (2011) Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Biofuels 4:54CrossRefGoogle Scholar
  17. 17.
    Wang Z, Yao Z, Zhou J, Zhang J (2017) Reuse of waste cotton cloth for the extraction of cellulose nanocrystals. Carbohyd Polym 157:945–952CrossRefGoogle Scholar
  18. 18.
    Luo J, Semenikhin N, Chang H, Moon RJ, Kumar S (2018) Post-sulfonation of cellulose nanofibrils with a one-step reaction to improve dispersibility. Carbohyd Polym 181:247–255CrossRefGoogle Scholar
  19. 19.
    Ilyas RA, Sapuan SM, Ishak MR (2018) Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohyd Polym 181:1038–1051CrossRefGoogle Scholar
  20. 20.
    Xu S, Hossain MM, Lau BBY, To TQ, Rawal R, Aldous L (2017) Total quantification and extraction of shikimic acid from star anise (llicium verum) using solid-state NMR and cellulose-dissolving aqueous hydroxide solutions. Sustain Chem Pharm 5:115–121CrossRefGoogle Scholar
  21. 21.
    Smyth M, García A, Rader C, Foster EJ, Bras J (2017) Extraction and process analysis of high aspect ratio cellulose nanocrystals from corn (Zea mays) agricultural residue. Ind Crops Prod 108:257–266CrossRefGoogle Scholar
  22. 22.
    Ilangovan M, Guna V, Hu C, Nagananda GS, Reddy N (2018) Curcuma longa L. plant residue as a source for natural cellulose fibers with antimicrobial activity. Ind Crops Prod 112:556–560CrossRefGoogle Scholar
  23. 23.
    Alila S, Besbes I, Vilar MR, Mutje P, Boufi S (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind Crops Prod 41:250–259CrossRefGoogle Scholar
  24. 24.
    Ng HM, Sin LT, Tee TT, Bee ST, Hui D, Low CY, Rahmat AR (2015) Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos B Eng 75:176–200CrossRefGoogle Scholar
  25. 25.
    Zhang K, Sun P, Liu H, Shang S, Song J, Wang D (2016) Extraction and comparison of carboxylated cellulose nanocrystals from bleached sugarcane bagasse pulp using two different oxidation methods. Carbohyd Polym 138:237–243CrossRefGoogle Scholar
  26. 26.
    El Achaby M, Kassab Z, Barakat A, Aboulkas A (2018) Alfa fibers as viable sustainable source for cellulose nanocrystals extraction: Application for improving the tensile properties of biopolymer nanocomposite films. Ind Crops Prod 112:499–510CrossRefGoogle Scholar
  27. 27.
    Chien CH, Zhou C, Wei HC, Sing SY, Theodore A, Wu CY, Hsu YM, Birky B (2018) Feasibility test of cellulose filter for collection of sulfuric acid mists. Sep Purif Technol 195:398–403CrossRefGoogle Scholar
  28. 28.
    Vinayaka DL, Guna V, Madhavi D, Arpitha M, Reddy N (2017) Ricinus communis plant residues as a source for natural cellulose fibers potentially exploitable in polymer composites. Ind Crops Prod 100:126–131CrossRefGoogle Scholar
  29. 29.
    Sobolciak P, Tanvir A, Popelka A, Moffat J, Mahmoud KA, Krupa I (2017) The preparation, properties and applications of electrospun co-polyamide 6,12 membranes modified by cellulose nanocrystals. Mater Des 132:314–323CrossRefGoogle Scholar
  30. 30.
    Khoathane MC, Sadiku ER, Agwuncha SC (2015) Chapter 14—Surface modification of natural fiber composites and their potential applications. In: Thakur VK, Singha AS (eds)Surface modification of biopolymers. Wiley, USA, pp 370–400Google Scholar
  31. 31.
    Zhang DY, Zhang N, Song P, Hao JY, Wan Y, Yao XH, Chen T, Li L (2018) Functionalized cellulose beads with three dimensional porous structure for rapid adsorption of active constituents from Pyrola incarnate. Carbohyd Polym 181:560–569CrossRefGoogle Scholar
  32. 32.
    Seabra AB, Bernardes JS, Fávaro WJ, Paula AJ, Durán N (2018) Cellulose nanocrystals as carriers in medicine and their toxicities: a review. Carbohyd Polym 181:514–527CrossRefGoogle Scholar
  33. 33.
    Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994CrossRefGoogle Scholar
  34. 34.
    Tingaut P, Zimmermann T, Sebe G (2012) Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials. J Mater Chem 22(38):20105–20111CrossRefGoogle Scholar
  35. 35.
    Kargarzadeh H, Loelovich M, Ahmad I, Thormas S, Dufresene A (2017) Methods for extraction of nanocellulose from various sources. In: Kargarzadeh H, Ahmad I, Thormas S, Dufresene A (eds) Handbook of nanocellulose and cellulose nano composite, 1st edn. Wiley VCHGoogle Scholar
  36. 36.
    Nascimento DM, Almeida JS, Dias AF, Figueirêdo MCB, Morais JPS, Feitosa JPA, Rosa MF (2014) A novel green approach for the preparation of cellulose nanowhiskers from white coir. Carbohyd Polym 110(2014):456–463CrossRefGoogle Scholar
  37. 37.
    Deepa B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA, Leao AL, de Souza SF, Kottaisamy M (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Biores Technol 102(2011):1988–1997CrossRefGoogle Scholar
  38. 38.
    Lin J, Miao X, Zhang X, Bian F (2017) Controllable generation of renewable nanofibrils from green materials and their application in nanocomposites. In: Thakur VK, Thakur MK, Kessler MR (eds) Handbook of composites from renewable materials. Wiley-Scrivener publishing, 8, pp 61–102Google Scholar
  39. 39.
    Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohyd Polym 90(2):735–764CrossRefGoogle Scholar
  40. 40.
    Cherian BM, Leao AL, de Souza SF, Costa LMM, de Olyveira GM, Kottaisamy M, Nagarajan ER, Thomas S (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohyd Polym 86(2011):1790–1798CrossRefGoogle Scholar
  41. 41.
    Nascimento DM, Dias AF, Junior CPA, Rosa MF, Morais JPS, Figueiredo MCB (2016) A comprehensive approach for obtaining cellulose nanocrystal from coconut fiber. Part II: environment assessment of technological pathways. Ind Crops and ProdGoogle Scholar
  42. 42.
    Kalia S, Dufresne A, Cherian BM, Kaith BS, Averous L, Njuguna J et al (2011) Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci 1–35Google Scholar
  43. 43.
    Cherian BM, Leao AL, De Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf by steam explosion. Carbohyd Polym 81:720–725CrossRefGoogle Scholar
  44. 44.
    Costa LMM, de Olyveira GM, Cherian BM, Leao AL, de Souza SF, Ferreira M (2013) Bionanocomposites from electrospun PVA/pineapple nanofibers/Stryphnodendron adstringens bark extract for medical applications. Ind Crops Prod 41(2013):198–202CrossRefGoogle Scholar
  45. 45.
    Abraham E, Deepa B, Pothan LA, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2014) Extractio of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohyd Polym 86:1468–1475CrossRefGoogle Scholar
  46. 46.
    Wang B, Sain M (2007) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67:2521–2527CrossRefGoogle Scholar
  47. 47.
    Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci Part B: Polym Phys 52:791–806CrossRefGoogle Scholar
  48. 48.
    Li Y, Liu Y, Chen W, Wang Q, Liu Y, Li J, Yu H (2015) Facile extraction of cellulose nanocrystals from wood using ethanol and peroxide solvothermal pretreatment followed by ultrasonic nanofibrillation. Green Chem 00:1–8Google Scholar
  49. 49.
    Luzia F, Fortunati E, Pugliaa D, Lavorgna M, Santulli C, Kenny JM, Torre L (2014) Optimized extraction of cellulose nanocrystals from pristine and carded hemp fibres. Ind Crops Prod 56:175–186CrossRefGoogle Scholar
  50. 50.
    Cao Y, Wang WH, Wang QW (2013) Application of mechanical models to flax fiber/wood fiber/plastic composites. BioResources 8(3):3276–3288CrossRefGoogle Scholar
  51. 51.
    Jonoobi M, Mathew AP, Oksman K (2012) Producing low-cost cellulose nanofiber from sludge as new source of raw materials. Ind Crop Prod 40:232–238CrossRefGoogle Scholar
  52. 52.
    Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442CrossRefGoogle Scholar
  53. 53.
    Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, RowanS J, Weder C, Thielemans W, Toman M, Renneckar S et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33CrossRefGoogle Scholar
  54. 54.
    Ahola S, Turon X, Osterberg M, Laine J, Rojas O (2008) Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure. Langmuir 24(20):11592–11599CrossRefGoogle Scholar
  55. 55.
    Teixeira EM, Bondancia TJ, Teodoro KR, Corrêa AC, Marconcini JM, Mattoso LHC (2011) Sugarcane bagasse whiskers: extraction and characterizations. Ind Crops Prod 33(1):63–66CrossRefGoogle Scholar
  56. 56.
    Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromol 8(10):3276–3278CrossRefGoogle Scholar
  57. 57.
    Li MC, Wu Q, Song K, Lee S, Qing Y, Wu Y (2015) Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustain Chem Eng 3(5):821–832CrossRefGoogle Scholar
  58. 58.
    Li MC, Wu Q, Song K, Qing Y, Wu Y (2015) Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids. ACS Appl Mater Interface 7(8):5006–5016CrossRefGoogle Scholar
  59. 59.
    Li W, Yue JQ, Liu SX (2012) Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly(vinyl alcohol) composites. Ultrason Sonochem 19(3):479–485CrossRefGoogle Scholar
  60. 60.
    Chen WS, Yu HP, Li Q, Liu YX, Li J (2011) Ultralight and highly flexible aerogels with long cellulose I nanofibers. Soft Matter 7(21):10360–10368CrossRefGoogle Scholar
  61. 61.
    Ioelovich M (2013) Nanoparticles of amorphous cellulose and their properties. Am J Nanosci Nanotechnol 1(1):41–45CrossRefGoogle Scholar
  62. 62.
    Ioelovich M (2014) Cellulose-nanostructured natural polymer. Lambert Academic Publishing, SaarbrückenGoogle Scholar
  63. 63.
    Ioelovich M (2014) Peculiarities of cellulose nanoparticles. Tappi J 13(5):45–52Google Scholar
  64. 64.
    Kim CW, Kim DS, Kang SY, Marquez M, Joo YL (2006) Structural studies of electrospun cellulose nanofibers. Polymer 47(14):5097–5107CrossRefGoogle Scholar
  65. 65.
    Quan SL, Kang SG, Chin IJ (2010) Characterization of cellulose fibers electrospun using ionic liquid. Cellulose 17(2):223–230CrossRefGoogle Scholar
  66. 66.
    Stylianopoulos T, Kokonou M, Michael S, Tryfonos A, Rebholz C, Odysseos AD, Doumanidis C (2012) Tensile mechanical properties and hydraulic permeabilities of electrospun cellulose acetate fiber meshes. J Biomed Mater Res 100(8):2222–2230CrossRefGoogle Scholar
  67. 67.
    Abdul Khalil HPS, Bhat AH, Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohyd Polym 87(2):963–979CrossRefGoogle Scholar
  68. 68.
    Abdul Khalil HPS, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R et al (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohyd Polym 99:649–665CrossRefGoogle Scholar
  69. 69.
    Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromol 6(2):612–626CrossRefGoogle Scholar
  70. 70.
    Morais JPS, Rosa MF, de Souza FMM, Nascimento LD, do Nascimento DM, Cassales AR (2013) Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohyd Polym 91(1):229–235CrossRefGoogle Scholar
  71. 71.
    Emanuel MF, Ricardo AP, Mano JF, Reisa RL (2013) Bionanocomposites from lignocellulosic resources: properties, applications and future trends for their use in the biomedical field. Prog Polym Sci 38(10–11):1415–1441Google Scholar
  72. 72.
    Imai T, Sugiyama J (1998) Nanodomains of Iα and Iβ cellulose in algal microfibrils. Macromolecules 31(18):6275–6279CrossRefGoogle Scholar
  73. 73.
    Kim NH, Herth W, Vuong R, Chanzy H (1996) The cellulose system in the cell wall of micrasterias. J Struct Biol 117(3):195–203CrossRefGoogle Scholar
  74. 74.
    Sugiyama J, Harada H, Fujiyoshi Y, Uyeda N (1985) Lattice images from ultrathin sections of cellulose microfibrils in the cell wall of Valonia macrophysa Kütz. Planta 166(2):161–168CrossRefGoogle Scholar
  75. 75.
    Hua K, Stromme M, Mihranyam A, Ferraz N (2015) Nanocellulose from green algae modulates the in vitro inflammatory response of monocytes/macrophages. Cellulose 22:3673–3688CrossRefGoogle Scholar
  76. 76.
    Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9(1):57–65CrossRefGoogle Scholar
  77. 77.
    Iwamoto S, Isogai A, Iwata T (2011) Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Biomacromol 12(3):831–836CrossRefGoogle Scholar
  78. 78.
    Kimura S, Itoh T (1996) New cellulose synthesizing complexes (terminal complexes) involved in animal cellulose biosynthesis in the tunicate Metandrocarpa uedai. Protoplasma 194(3–4):151–163CrossRefGoogle Scholar
  79. 79.
    Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89(5):1191–1206CrossRefGoogle Scholar
  80. 80.
    Sturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromol 6(2):1055–1061CrossRefGoogle Scholar
  81. 81.
    Zhao Y, Zhang Y, Lindström ME, Li J (2014) Tunicate cellulose nanocrystals: preparation, neat films and nanocomposite films with glucomannans. Carbohydr Polym 117:286–296CrossRefGoogle Scholar
  82. 82.
    Ferrer A, Filpponen I, Rodríguez A, Laine J, Rojas OJ (2012) Valorization of residual Empty palm fruit bunch fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper. Bioresour Technol 125:249–255CrossRefGoogle Scholar
  83. 83.
    Feng YH, Cheng TY, Yang WG, Ma PT, He HZ, Yin XC, Yu XX (2018) Characteristics and environmentally friendly extraction of cellulose nanofibrils from sugarcane bagasse. Ind Crops Prod 111:285–291CrossRefGoogle Scholar
  84. 84.
    Abdullah MA, Nazir MS, Raza MR, WahjoediB A, Yussof AW (2016) Autoclave and ultra-sonication treatments of oil palm empty fruit bunch fibers for cellulose extraction and its polypropylene composite properties. J Clean Prod 126:686–697CrossRefGoogle Scholar
  85. 85.
    Miao X, Lin J, Tian F, Li X, Bian F, Wang J (2016) Cellulose nanofibrils extracted from the byproduct of cotton plant. Carbohyd Polym 136:841–850CrossRefGoogle Scholar
  86. 86.
    Trovatti E, Fernandes SCM, Rubatat L, da-Silva-Perez D, Freire CSR, Silvestre AJD et al (2012) Pullulane nanofibrillated cellulose composite films with improved thermal and mechanical properties. Compos Sci Technol 72:1556–1561CrossRefGoogle Scholar
  87. 87.
    Besbesa I, Vilar MR, Boufi S (2011) Nanofibrillated cellulose from alfa, eucalyptus and pine fibres: preparation, characteristics and reinforcing potential. Carbohyd Polym 86:1198–1206CrossRefGoogle Scholar
  88. 88.
    Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC et al (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohyd Polym 81:83–92CrossRefGoogle Scholar
  89. 89.
    Kargarzadeh H, Ahmad I, Abdullah I, Dufresne A, Zainudin SY, Sheltami RM (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19:855–866CrossRefGoogle Scholar
  90. 90.
    Jonoobi M, Harun J, Shakeri A, Misra M, Oksman K (2009) Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources 4(2):626–639Google Scholar
  91. 91.
    Shin HK, Jeun JP, Kim HB, Kang PH (2012) Isolation of cellulose fibers from kenaf using electron beam. Radiat Phys Chem 81:936–940CrossRefGoogle Scholar
  92. 92.
    Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod 37:93–99CrossRefGoogle Scholar
  93. 93.
    Sonia A, Dasan KP, Alex R (2013) Celluloses microfibres (CMF) reinforced poly(ethylene-co-vinyl acetate) (EVA) composites: dynamic mechanical, gamma and thermal ageing studies. Eng Chem 228:1214–1222CrossRefGoogle Scholar
  94. 94.
    Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68:557–565CrossRefGoogle Scholar
  95. 95.
    Chen WS, Yu HP, Liu YX, Chen P, Zhang MX, Hai YF (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohyd Polym 2011:1804–1811CrossRefGoogle Scholar
  96. 96.
    Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohyd Polym 79:1086–1093CrossRefGoogle Scholar
  97. 97.
    Zainuddin SYZ, Ahmad I, Kargarzadeh H, Abdullah I, Dufresne A (2013) Potential of using multiscale kenaf fibers as reinforcing filler in cassava starch-kenaf biocomposites. Carbohyd Polym 92:2299–2305CrossRefGoogle Scholar
  98. 98.
    Maiti S, Jayaramudu J, Dasa K, Reddy SM, Sadiku R, Ray SS et al (2012) Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohyd Polym 98:562–567CrossRefGoogle Scholar
  99. 99.
    Aranguren MI, Marcovich NE, Salgueiro W, Somoza A (2013) Effect of the nanocellulose content on the properties of reinforced polyurethanes. A study using mechanical tests and positron annihilation spectroscopy. Polym Test 32:115–122CrossRefGoogle Scholar
  100. 100.
    Tee TT, Sin LT, Gobinath R, Bee ST, Hui D, Rahmat AR et al (2013) Investigation of nano-size montmorillonite on enhancing polyvinyl alcohol-starch blends prepared via solution cast approach. Compos Part B 47:238–247CrossRefGoogle Scholar
  101. 101.
    Shi J, Shi SQ, Barnes HM, Pittman JCU (2011) A chemical process for preparing cellulosic fibers hierarchically from kenaf bast fibers. BioResources 6(1):879–890Google Scholar
  102. 102.
    Lu P, Hsieh YL (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohyd Polym 82:329–336CrossRefGoogle Scholar
  103. 103.
    Bai W, Holbery J, Li KC (2009) A technique for production of nanocrystalline cellulose with a narrow size distribution. Cellulose 16(3):455–465CrossRefGoogle Scholar
  104. 104.
    Filson PB, Dawson-Andoh BE (2009) Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials. Bioresour Technol 100(7):2259–2264CrossRefGoogle Scholar
  105. 105.
    Araki J, Wada M, Kuga S, Okano T (1998) Low properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A 142(1):75–82CrossRefGoogle Scholar
  106. 106.
    Yu H, Qin Z, Liang B, Liu N, Zhou Z, Chen L (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1(12):3938–3944CrossRefGoogle Scholar
  107. 107.
    Acharya SK, Mishra P, Mehar SK (2011) Effect of surface treatment on the mechanical properties of bagasse fiber reinforced polymer composite. Bio-Resources 6(3):3155–3165Google Scholar
  108. 108.
    Karimi S, Tahir P, Karimi A, Dufresne A, Abdulkhani A (2014) Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano. Carbohyd Polym 101:878–885CrossRefGoogle Scholar
  109. 109.
    Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRefGoogle Scholar
  110. 110.
    Ruiz E, Cara C, Manzanares P, Ballesteros M, Castro E (2008) Evaluation of steam explosion pre-treatment for enzymatic hydrolysis of sunflower stalks. Enzyme Microb Technol 42(2):160–166CrossRefGoogle Scholar
  111. 111.
    de Souza Lima MM, Borsali R (2002) Static and dynamic light scattering from polyelectrolyte microcrystal cellulose. Langmuir 18(4):992–996CrossRefGoogle Scholar
  112. 112.
    Spagnol C, Rodrigues FHA, Pereira AGB, Fajardo AR, Rubira AF, Muniz EC (2012) Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly (acrylic acid). Carbohyd Polym 87:2038–2045CrossRefGoogle Scholar
  113. 113.
    Zaini LH, Jonoobi M, Tahir PMD, Karimi S (2013) Isolation and characterization of cellulose whiskers from kenaf (Hibiscus cannabinus L.) bast fibers. J Biomater Nanobiotechnol 4:37–44CrossRefGoogle Scholar
  114. 114.
    Silverio HA, Neto WPF, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44:427–436CrossRefGoogle Scholar
  115. 115.
    Follain N, Belbekhouche S, Bras J, Siqueira G, Marais S, Dufresne A (2013) Water transport properties of bio-nanocomposites reinforced by Luffa cylindrical cellulose nanocrystals. Membr Sci 427:218–229CrossRefGoogle Scholar
  116. 116.
    Liu HY, Liu D, Yao F, Wu QL (2010) Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Bioresour Technol 101:5685–5692CrossRefGoogle Scholar
  117. 117.
    Espino-Perez E, Bras J, Ducruet V, Guinault A, Dufresne A, Domenek S (2013) Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites. Eur Polym J 49:3144–3154CrossRefGoogle Scholar
  118. 118.
    Peng YC, Gardner DJ, Han YS (2012) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19:91–102CrossRefGoogle Scholar
  119. 119.
    Jiang SH, Duan GG, Scheobel J, Agarwal S, Greiner A (2013) Short electrospun polymeric nanofibers reinforced polyimide nanocomposites. Compos Sci Technol 88:57–61CrossRefGoogle Scholar
  120. 120.
    Neto WPF, Silvério HA, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue—Soy hulls. Ind Crops Prod 42:480–488CrossRefGoogle Scholar
  121. 121.
    Besbes I, Rei Vilar M, Boufi S (2011) Nanofibrillated cellulose from alfa, eucalyptus and pine fibres: preparation, characteristics and reinforcing potential. Carbohyd Polym 86:1198–1206CrossRefGoogle Scholar
  122. 122.
    Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohyd Polym 84:975–983CrossRefGoogle Scholar
  123. 123.
    El Achaby M, El Miri N, Aboulkas A, Zahouily M, Bilal E, Barakat A, Solhy A (2017) Processing and properties of eco-friendly bio-nanocomposite films filled with cellulose nanocrystals from sugarcane bagasse. Int J Biol Macromol 96:340–352CrossRefGoogle Scholar
  124. 124.
    El Miri N, Abdelouahdi K, Barakat A, Zahouily M, Fihri A, Solhy A, El Achaby M (2015) Bio-nanocomposite films reinforced with cellulose nanocrystals: rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydr Polym 129:156–167CrossRefGoogle Scholar
  125. 125.
    El Miri N, El Achaby M, Fihri A, Larzek M, Zahouily M, Abdelouahdi K, Barakat A, Solhy A (2016) Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites. Carbohydr Polym 137:239–248CrossRefGoogle Scholar
  126. 126.
    Teodoro KBR, Teixeira EM, Corrêa AC, Campos A, Marconcini JM, Mattoso LHC (2011) Whiskers from sisal fibers obtained under different acid hydrolysis conditions: effect of time and temperature of extraction. Polêmeros 21(4):280–285CrossRefGoogle Scholar
  127. 127.
    Siqueira G, Abdillahi H, Bras J, Dufresne A (2010) High reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim Dourado). Cellulose 17(2):289–298CrossRefGoogle Scholar
  128. 128.
    Silvério HA, Neto WPF, Dantas NO, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44:427–436CrossRefGoogle Scholar
  129. 129.
    Islam MT, Alam MM, Zoccola M (2013) Review on modification of nanocellulose for application in composites. Int J Innovative Res Sci Eng Technol 2(10):5451Google Scholar
  130. 130.
    Gandolfi S, Ottolina G, Riva S, Fantoni GP, Patel I (2013) Completechemical analysis of carmagnola hemp hurds and structural features of its components. BioResources 8:2641–2656CrossRefGoogle Scholar
  131. 131.
    Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26(9):1561–1603CrossRefGoogle Scholar
  132. 132.
    Owonubi SJ, Agwuncha SC, Mukwevho E, Aderibigbe BA, Sadiku ER, Biotidara OF, Varaprasad K (2017) Application of hydrogel biocomposites for multiple drug delivery. In: Handbook of composites from renewable materials, vol 6: Nanocomposites: advance applications. Scrivener Publishing, pp 139–166Google Scholar
  133. 133.
    Anirudhan TS, Rejeena SR (2015) Biopolymer-based stimuli-sensitive functionalized graft copolymers as controlled drug delivery systems. In: Thakur VK, Singha AS (eds) Surface modification of biopolymers. Wiley, USA, pp 291–334Google Scholar
  134. 134.
    Zhao Q, Li B (2008) pH-controlled drug loading and release from biodegradable micro capsules. Nanomedicine 4:302–310CrossRefGoogle Scholar
  135. 135.
    Tsukagoshi T, Kondo Y, Yoshino N (2007) Preparation of thin polymer film with dontrolled drug release. Colloids Surf B Biointerfaces 57:219–225CrossRefGoogle Scholar
  136. 136.
    Charreau H, Foresti ML, Vázquez A (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat Nanotechnol 7:56–80CrossRefGoogle Scholar
  137. 137.
    Plackett DV, Letchford K, Jackson JK, Burt HM (2014) A review of nanocellulose as a novel vehicle for drug delivery. Nord Pulp Pap Res J 29:105–118CrossRefGoogle Scholar
  138. 138.
    Abitbol T, Palermo A, Moran-Mirabal JM, Cranston ED (2013) Fluorescent labeling and characterization of cellulose nanocrystals with varying charge contents. Biomacromol 14:3278–3284CrossRefGoogle Scholar
  139. 139.
    Jackson JK, Letchford K, Wasserman BZ, Ye L, Hamad WY, Burt HM (2011) The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int J Nanomed 6:321–330Google Scholar
  140. 140.
    Qing WX, Wang Y, Wang YY, Zhao DB, Liu XH, Zhu JH (2016) The modified nanocrystalline cellulose for hydrophobic drug delivery. Appl Surf Sci 366:404–409CrossRefGoogle Scholar
  141. 141.
    Alkilany AM, Murphy C (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 12:2313CrossRefGoogle Scholar
  142. 142.
    Feese E, Sadeghifar H, Gracz HS, Argyropoulos DS, Ghiladi RA (2011) Photobactericidal porphyrin-cellulose nanocrystals: synthesis, characterization: and antimicrobial properties. Biomacromol 12:3528–3539CrossRefGoogle Scholar
  143. 143.
    Carpenter BL, Feese E, Sadeghifar H, Argyropoulos DS, Ghiladi RA (2012) Porphyrin-cellulose nanocrystals: a photobactericidal material that exhibits broad spectrum antimicrobial activity. J Photochem Photobiol 88:527–536CrossRefGoogle Scholar
  144. 144.
    Yallapu MM, Dobberpuhl MR, Maher DM, Jaggi M, Chauhan SC (2012) Design of curcumin loaded cellulose nanoparticles for prostate cancer. Curr Drug Metab 13:120–128CrossRefGoogle Scholar
  145. 145.
    Dash R, Ragauskas AJ (2012) Synthesis of a novel cellulose nanowhisker-based drug delivery system. RCS Adv 2:3403–3409Google Scholar
  146. 146.
    Zhang L, Li Q, Zhou J, Zhang L (2012) Synthesis and photophysical behavior of pyrene-bearing cellulose nanocrystals for Fe3+ sensing. Macromol Chem Phys 212:1612–1617CrossRefGoogle Scholar
  147. 147.
    Drogat N, Granet R, Le Morvan C, Bégaud-Grimaud G, Krausz P, Sol V (2012) Chlorin-PEI-labeled cellulose nanocrystals: synthesis: characterization and potential application in PDT. Bioorg Med Chem Lett 22:3648–3652CrossRefGoogle Scholar
  148. 148.
    Akhlaghi SP, Berry RC, Tam KC (2013) Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications. Cellulose 20:1746–1747CrossRefGoogle Scholar
  149. 149.
    Dong S, Cho HJ, Lee YW, Roman M (2014) Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting. Biomacromol 15:1560–1567CrossRefGoogle Scholar
  150. 150.
    Tang L, Huang B, Li T, Lu Q, Chen X (2014) Functionalized cellulose nanocrystals as a carrier for colon-targeted drug delivery system. Supercond Sci Technol 32:22–28Google Scholar
  151. 151.
    Colacino KR, Arena CB, Dong S, Roman M, Davalos RV, Lee YW (2015) Folate conjugated cellulose nanocrystals potentiate irreversible electroporation-induced cytotoxicity for the selective treatment of cancer cells. Technol Cancer Res Treat 14:757–766CrossRefGoogle Scholar
  152. 152.
    Lahiji RR, Boluk Y, McDermott M (2012) Adhesive surface interactions of cellulose nanocrystals from different sources. J Mater Sci 47:3961–3970CrossRefGoogle Scholar
  153. 153.
    Cao J, Peng LQ, Du LJ, Zhang QD, Xu JJ (2017) Ultrasound-assisted ionic liquid-based micellar extraction combined with microcrystalline cellulose as sorbent in dispersive microextraction for the determination of phenolic compounds in propolis. Anal Chim Acta 963:24–32CrossRefGoogle Scholar
  154. 154.
    Siaueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: Influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromol 10(2):425–432CrossRefGoogle Scholar
  155. 155.
    Mcallister S (2005) Analysis and comparison of sustainable water filters. United Nations, 22Google Scholar
  156. 156.
    Hassan E, Hassan M, Abou-zeid R, Berglund L, Oksman K (2017) Use of bacterial cellulose and crosslinked cellulose nanofibers membranes for removal of oil from oil-in-water emulsions. Polymers 9(9).  https://doi.org/10.3390/polym9090388CrossRefGoogle Scholar
  157. 157.
    Voisin H, Bergström L, Liu P, Mathew A (2017) Nanocellulose-based materials for water purification. Nanomaterials 7(3):57.  https://doi.org/10.3390/nano7030057CrossRefGoogle Scholar
  158. 158.
    El-Nahas AM, Salaheldin TA, Zaki T, El-Maghrabi HH, Marie AM, Morsy SM et al (2017) Functionalized cellulose-magnetite nanocomposite catalysts for efficient biodiesel production. Chem Eng J 322:167–180CrossRefGoogle Scholar
  159. 159.
    Lee M, Heo MH, Lee HH, Kim YW, Shin J (2017) Tunable softening and toughening of individualized cellulose nanofibers-polyurethane urea elastomer composites. Carbohyd Polym 159:125–135CrossRefGoogle Scholar
  160. 160.
    Xu D, Xiao X, Cai J, Zhou J, Zhang L (2015) Highly rate and cycling stable electrode materials constructed from polyaniline/cellulose nanoporous microspheres. J Mater Chem A 3:16424–16429CrossRefGoogle Scholar
  161. 161.
    Zhang J, Li L, Li Y, Yang C (2017) Microwave-assisted synthesis of hierarchical mesoporous nano-TiO2/cellulose composites for rapid adsorption of Pb2+. Chem Eng J 313:1132–1141CrossRefGoogle Scholar
  162. 162.
    Chesney A, Barnwell P, Stonehouse DF, Steel PG (2000) Amino-derivatised beaded cellulose gels: novel accessible and biodegradable scavenger resins for solution phase combinatorial synthesis. Green Chem 2:57–62CrossRefGoogle Scholar
  163. 163.
    Chesney A, Steel PG, Stonehouse DF (2000) High loading cellulose based poly (alkenyl) resins for resin capture applications in halogenation reactions. J Comb Chem 2:434–437CrossRefGoogle Scholar
  164. 164.
    Weber V, Linsberger I, Ettenauer M, Loth F, Höyhtyä M, Falkenhagen D (2005) Development of specific adsorbents for human tumor necrosis factor-α: influence of antibody immobilization on performance and biocompatibility. Biomacromol 6:1864–1870CrossRefGoogle Scholar
  165. 165.
    Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762CrossRefGoogle Scholar
  166. 166.
    Korecká L, Bílková Z, Holèapek M, Královský J, Benes M, Lenfeld J et al (2004) Utilization of newly developed immobilized enzyme reactors for preparation and study of immunoglobulin G fragments. J Chromatogr B 808:15–24CrossRefGoogle Scholar
  167. 167.
    Volkert B, Wolf B, Fischer S, Li N, Lou C (2009) Application of modified bead cellulose as a carrier of active ingredients. Macromol Symp 280:130–135CrossRefGoogle Scholar
  168. 168.
    He Z, Song H, Cui Y, Zhu W, Du K, Yao S (2014) Porous spherical cellulose carrier modified with polyethyleneimine and its adsorption for Cr(III) and Fe(III) from aqueous solutions. Chin J Chem Eng 22:984–990CrossRefGoogle Scholar
  169. 169.
    Monier M, Akl MA, Ali WM (2014) Modification and characterization of cellulose cotton fibers for fast extraction of some precious metal ions. Int J Biol Macromol 66:125–134CrossRefGoogle Scholar
  170. 170.
    Wang L, Li J (2013) Adsorption of C. I. reactive red 228 dye from aqueous solution by modified cellulose from flax shive: Kinetics, equilibrium, and thermodynamics. Ind Crops Prod 42:153–158CrossRefGoogle Scholar
  171. 171.
    Zhou Y, Min Y, Qiao H, Huang Q, Wang E, Ma T (2015) Improved removal of malachite green from aqueous solution using chemically modified cellulose by anhydride. Int J Biol Macromol 74:271–277CrossRefGoogle Scholar
  172. 172.
    Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromol 14(1):248–253CrossRefGoogle Scholar
  173. 173.
    John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohyd Polym 71:343–364CrossRefGoogle Scholar
  174. 174.
    Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromol 9(6):1579–1585CrossRefGoogle Scholar
  175. 175.
    Rodionova G, Lenes M, Eriksen O, Gregersen O (2010) Surface chemical modification of microfibrillated cellulose: Improvement of barrier properties for packaging applications. Cellulose 18(1):127–134CrossRefGoogle Scholar
  176. 176.
    Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11(9):2195–2198CrossRefGoogle Scholar
  177. 177.
    Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17(3):559–574CrossRefGoogle Scholar
  178. 178.
    Aulin C, Netrval J, Wågberg L, Lindström T (2010) Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 6(14):3298–3305CrossRefGoogle Scholar
  179. 179.
    Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Biores Technol 101(15):5961–5968CrossRefGoogle Scholar
  180. 180.
    Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17(4):835–848CrossRefGoogle Scholar
  181. 181.
    Chinga-Carrasco G, Syverud K (2010) Computer-assisted quantification of the multi-scale structure of films made of nanofibrillated cellulose. J Nanopart Res 12:841–851CrossRefGoogle Scholar
  182. 182.
    Blaker JJ, Lee KY, Li X, Menner A, Bismarck A (2009) Renewable nanocomposite polymer foams synthesized from Pickering emulsion templates. Roy Soc Chem 11(9):1321–1326Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Stephen C. Agwuncha
    • 1
    Email author
  • Chioma G. Anusionwu
    • 2
  • Shesan J. Owonubi
    • 3
  • E. Rotimi Sadiku
    • 4
  • Usman A. Busuguma
    • 5
  • I. David Ibrahim
    • 4
  1. 1.Department of ChemistryIbrahim Badamasi Babangida UniversityLapaiNigeria
  2. 2.Department of Applied ChemistryUniversity of JohannesburgJohannesburgRSA
  3. 3.Department of ChemistryUniversity of ZululandKwadlangezwa, Kwazulu NatalRSA
  4. 4.Department of Chemical, Metallurlogical and Material EngineeringTshwane University of TechnologyPretoriaRSA
  5. 5.Department of Remedial ScienceRamat PolytechnicMaiduguriNigeria

Personalised recommendations