Mechanical Techniques for Enhanced Dispersion of Cellulose Nanocrystals in Polymer Matrices

  • Jamileh ShojaeiaraniEmail author
  • Dilpreet S. Bajwa
  • Kerry Hartman


Cellulose nanocrystals extracted from different biomass resources have a great potential as a reinforcing agent in nanocomposite materials owing to the excellent mechanical properties and environmental sustainability. The superior properties of cellulose nanocrystals in the different polymer matrix is stifled by the non-uniform dispersion through the polymer matrix. The main approaches for the production of cellulose nanocrystals materials are improving the dispersion quality of cellulose nanocrystals in the polymer matrix with different hydrophilicities. The application of different chemical-oriented surface modification methods has been extensively reported. However, still, the need for developing new manufacturing process capable of scaling up has motivated the academia to find out innovative mechanical techniques. In this chapter, the discussion is focused on the advances of the emerging ideas about nanocellulose materials manufacturing process with a main focus on the mechanical properties of the final product.


Cellulose nanocrystals Liquid feeding Masterbatch approach Solvent casting Spin-coating 



This work is based upon works supported by the National Science Foundation, ND EPSCoR under grant No. 11A1355466.


  1. 1.
    Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393CrossRefGoogle Scholar
  2. 2.
    Akhlaghi SP, Berry RC, Tam KC (2013) Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications. Cellulose 20(4):1747–1764CrossRefGoogle Scholar
  3. 3.
    Gozdecki C, Wilczyn A (2015) Effects of wood particle size and test specimen size on mechanical and water resistance properties of injected wood–high density polyethylene composite. Wood Fiber Sci 47(4):365–374Google Scholar
  4. 4.
    Siqueira G, Tapin-Lingua S, Bras J, da Silva Perez D, Dufresne A (2010) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17(6):1147–1158CrossRefGoogle Scholar
  5. 5.
    Wang Q, Zhao X, Zhu J (2014) Kinetics of strong acid hydrolysis of a bleached kraft pulp for producing cellulose nanocrystals (CNCs). Ind Eng Chem Res 53(27):11007–11014CrossRefGoogle Scholar
  6. 6.
    Filson PB, Dawson-Andoh BE, Schwegler-Berry D (2009) Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem 11(11):1808–1814CrossRefGoogle Scholar
  7. 7.
    Ahola S, Turon X, Osterberg M, Laine J, Rojas O (2008) Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure. Langmuir 24(20):11592–11599CrossRefGoogle Scholar
  8. 8.
    Angles MN, Dufresne A (2001) Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior. Macromolecules 34(9):2921–2931Google Scholar
  9. 9.
    Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci: Appl Polym Symp (United States), vol 37, No. CONF-8205234-Vol. 2. ITT Rayonier Inc., Shelton, WA Google Scholar
  10. 10.
    Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1):19–32CrossRefGoogle Scholar
  11. 11.
    Hindi SS (2017) Differentiation and synonyms standardization of amorphous and crystalline cellulosic products. Nanosci Nanotechnol 4(3):73–85Google Scholar
  12. 12.
    Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromol 10(9):2571–2576CrossRefGoogle Scholar
  13. 13.
    Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20(5):2221–2262CrossRefGoogle Scholar
  14. 14.
    Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben-Shalom T, Lapidot S, Shoseyov O (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol 39:76–88CrossRefGoogle Scholar
  15. 15.
    Nagalakshmaiah M (2016) Melt processing of cellulose nanocrystals: thermal, mechanical and rheological properties of polymer nanocomposites. Grenoble AlpesGoogle Scholar
  16. 16.
    Hebeish A, Guthrie J (2012) The chemistry and technology of cellulosic copolymers, vol 4. Springer Science & Business MediaGoogle Scholar
  17. 17.
    Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500CrossRefGoogle Scholar
  18. 18.
    Popa V (2011) Polysaccharides in medicinal and pharmaceutical applications. Smithers RapraGoogle Scholar
  19. 19.
    Sokolova Y, Shubanov S, Kandyrin L, Kalugina E (2009) Polymer nanocomposites and their structure and properties. A review. Plast Massy 3:18–23Google Scholar
  20. 20.
    Shojaeiarani J, Bajwa DS, Stark NM (2018) Green esterification: A new approach to improve thermal and mechanical properties of poly(lactic acid) composites reinforced by cellulose nanocrystals. J Appl Polym SciGoogle Scholar
  21. 21.
    Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6(14):7764–7779Google Scholar
  22. 22.
    Lucia LA, Rojas O (2009) The nanoscience and technology of renewable biomaterials. WileyGoogle Scholar
  23. 23.
    Thakur VK (2014) Nanocellulose polymer nanocomposites: fundamentals and applications. WileyGoogle Scholar
  24. 24.
    Rauwendaal C (2014) Polymer extrusion: Carl Hanser Verlag GmbH Co KGGoogle Scholar
  25. 25.
    Giles Jr HF, Mount III EM, Wagner Jr JR (2004) Extrusion: the definitive processing guide and handbook. William AndrewGoogle Scholar
  26. 26.
    Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos sci technol 66(15):2776–2784CrossRefGoogle Scholar
  27. 27.
    Herrera N, Mathew AP, Oksman K (2015) Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: mechanical, thermal and optical properties. Compos Sci Technol 106:149–155CrossRefGoogle Scholar
  28. 28.
    Pracella M, Haque MM-U, Puglia D (2014) Morphology and properties tuning of PLA/cellulose nanocrystals bio-nanocomposites by means of reactive functionalization and blending with PVAc. Polymer 55(16):3720–3728Google Scholar
  29. 29.
    Mariano M, El Kissi N, Dufresne A (2015) Melt processing of cellulose nanocrystal reinforced polycarbonate from a masterbatch process. Eur Polym J 69:208–223CrossRefGoogle Scholar
  30. 30.
    Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70(12):1742–1747CrossRefGoogle Scholar
  31. 31.
    Gong G, Mathew AP, Oksman K (2011) Toughening effect of cellulose nanowhiskers on polyvinyl acetate: fracture toughness and viscoelastic analysis. Polym Compos 32(10):1492–1498CrossRefGoogle Scholar
  32. 32.
    Corrêa AC, de Morais Teixeira E, Carmona VB, Teodoro KBR, Ribeiro C, Mattoso LHC, Marconcini JM (2014) Obtaining nanocomposites of polyamide 6 and cellulose whiskers via extrusion and injection molding. Cellulose 21(1):311–322CrossRefGoogle Scholar
  33. 33.
    Lee S-H, Teramoto Y, Endo T (2011) Cellulose nanofiber-reinforced polycaprolactone/polypropylene hybrid nanocomposite. Compos A Appl Sci Manuf 42(2):151–156CrossRefGoogle Scholar
  34. 34.
    Yang W, Fortunati E, Dominici F, Giovanale G, Mazzaglia A, Balestra G, Kenny J, Puglia D (2016) Synergic effect of cellulose and lignin nanostructures in PLA based systems for food antibacterial packaging. Eur Polymer J 79:1–12CrossRefGoogle Scholar
  35. 35.
    Shojaeiarani J, Bajwa D, Stark N (2018) Spin-coating: a new approach for improving dispersion of cellulose nanocrytals and mechanical properties of poly(lactic acid) composites. Carbohyd polymGoogle Scholar
  36. 36.
    Rezakazemi M, Sadrzadeh M, Mohammadi T, Matsuura T (2017) Methods for the preparation of organic-inorganic nanocomposite polymer electrolyte membranes for fuel cells. In: Inamuddin D, Mohammad A, Asiri AM (eds) Organic-inorganic composite polymer electrolyte membranes. Springer International Publishing, Cham, pp 311–325CrossRefGoogle Scholar
  37. 37.
    Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati MM, Ismail AF, Matsuura T (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39(5):817–861CrossRefGoogle Scholar
  38. 38.
    Baheri B, Shahverdi M, Rezakazemi M, Motaee E, Mohammadi T (2014) Performance of PVA/NaA mixed matrix membrane for removal of water from Ethylene Glycol solutions by pervaporation. Chem Eng Commun 202(3):316–321CrossRefGoogle Scholar
  39. 39.
    Shahverdi M, Baheri B, Rezakazemi M, Motaee E, Mohammadi T (2013) Pervaporation study of ethylene glycol dehydration through synthesized (PVA-4A)/polypropylene mixed matrix composite membranes. Polym Eng Sci 53(7):1487–1493CrossRefGoogle Scholar
  40. 40.
    Dashti A, Harami HR, Rezakazemi M (2018) Accurate prediction of solubility of gases within H2-selective nanocomposite membranes using committee machine intelligent system. Int J Hydrogen Energy 43(13):6614–6624CrossRefGoogle Scholar
  41. 41.
    Rezakazemi M, Dashti A, Asghari M, Shirazian S (2017) H2—selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS. GA-ANFIS. Int J Hydrogen Energy 42(22):15211–15225CrossRefGoogle Scholar
  42. 42.
    Rostamizadeh M, Rezakazemi M, Shahidi K, Mohammadi T (2013) Gas permeation through H2-selective mixed matrix membranes: experimental and neural network modeling. Int J Hydrogen Energy 38(2):1128–1135CrossRefGoogle Scholar
  43. 43.
    Rezakazemi M, Mohammadi T (2013) Gas sorption in H2-selective mixed matrix membranes: experimental and neural network modeling. Int J Hydrogen Energy 38(32):14035–14041CrossRefGoogle Scholar
  44. 44.
    Rezakazemi M, Shahidi K, Mohammadi T (2012) Sorption properties of hydrogen-selective PDMS/zeolite 4A mixed matrix membrane. Int J Hydrogen Energy 37(22):17275–17284CrossRefGoogle Scholar
  45. 45.
    Rezakazemi M, Shahidi K, Mohammadi T (2012) Hydrogen separation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matrix membranes. Int J Hydrogen Energy 37(19):14576–14589CrossRefGoogle Scholar
  46. 46.
    Chinaglia DL, Gregorio R, Stefanello JC, Pisani Altafim RA, Wirges W, Wang F, Gerhard R (2010) Influence of the solvent evaporation rate on the crystalline phases of solution-cast poly (vinylidene fluoride) films. J Appl Polym Sci 116(2):785–791Google Scholar
  47. 47.
    Rezakazemi M, Vatani A, Mohammadi T (2016) Synthesis and gas transport properties of crosslinked poly(dimethylsiloxane) nanocomposite membranes using octatrimethylsiloxy POSS nanoparticles. J Nat Gas Sci Eng 30:10–18CrossRefGoogle Scholar
  48. 48.
    Rezakazemi M, Vatani A, Mohammadi T (2015) Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes. RSC Adv 5(100):82460–82470CrossRefGoogle Scholar
  49. 49.
    Farno E, Rezakazemi M, Mohammadi T, Kasiri N (2014) Ternary gas permeation through synthesized pdms membranes: experimental and CFD simulation basedon sorption-dependent system using neural network model. Polym Eng Sci 54(1):215–226CrossRefGoogle Scholar
  50. 50.
    Favier V, Canova G, Cavaillé J, Chanzy H, Dufresne A, Gauthier C (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6(5):351–355CrossRefGoogle Scholar
  51. 51.
    Siemann U (2005) Solvent cast technology—A versatile tool for thin film production. In: Scattering methods and the properties of polym mater, pp 307–316Google Scholar
  52. 52.
    Anbukarasu P, Sauvageau D, Elias A (2015) Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting. Sci Rep 5:17884CrossRefGoogle Scholar
  53. 53.
    Hsu S-T, Yao YL (2014) Effect of film formation method and annealing on morphology and crystal structure of Poly (l-Lactic Acid) films. J Manuf Sci Eng 136(2):021006CrossRefGoogle Scholar
  54. 54.
    Jonoobi M, Mathew AP, Abdi MM, Makinejad MD, Oksman K (2012) A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion. J Polym Environ 20(4):991–997CrossRefGoogle Scholar
  55. 55.
    Rezakazemi M, Sadrzadeh M, Matsuura T (2018) Thermally stable polymers for advanced high-performance gas separation membranes. Progr Energy Combust Sci 66:1–41CrossRefGoogle Scholar
  56. 56.
    Sadeghi A, Nazem H, Rezakazemi M, Shirazian S (2018) Predictive construction of phase diagram of ternary solutions containing polymer/solvent/nonsolvent using modified Flory-Huggins model. J Mol Liq 263:282–287CrossRefGoogle Scholar
  57. 57.
    Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227CrossRefGoogle Scholar
  58. 58.
    Bruckner JR, Kuhnhold A, Honorato-Rios C, Schilling T, Lagerwall JP (2016) Enhancing self-assembly in cellulose nanocrystal suspensions using high-permittivity solvents. Langmuir 32(38):9854–9862CrossRefGoogle Scholar
  59. 59.
    Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97(5):2014–2025CrossRefGoogle Scholar
  60. 60.
    Mellbring O, Kihlman Øiseth S, Krozer A, Lausmaa J, Hjertberg T (2001) Spin coating and characterization of thin high-density polyethylene films. Macromolecules 34(21):7496–7503CrossRefGoogle Scholar
  61. 61.
    Norrman K, Ghanbari-Siahkali A, Larsen N (2005) 6 Studies of spin-coated polymer films. Annu Rep Sect “C” (Physical Chemistry) 101:174–201Google Scholar
  62. 62.
    Hall DB, Underhill P, Torkelson JM (1998) Spin coating of thin and ultrathin polymer films. Polym Eng Sci 38(12):2039–2045CrossRefGoogle Scholar
  63. 63.
    Syed JA, Lu H, Tang S, Meng X (2015) Enhanced corrosion protective PANI-PAA/PEI multilayer composite coatings for 316SS by spin coating technique. Appl Surf Sci 325:160–169CrossRefGoogle Scholar
  64. 64.
    Brinker C, Hurd A, Schunk P, Frye G, Ashley C (1992) Review of sol-gel thin film formation. J Non-Cryst Solids 147:424–436CrossRefGoogle Scholar
  65. 65.
    Danglad-Flores J, Eickelmann S, Riegler H (2018) Deposition of polymer films by spin casting: a quantitative analysis. Chem Eng SciGoogle Scholar
  66. 66.
    Sahu N, Parija B, Panigrahi S (2009) Fundamental understanding and modeling of spin coating process: a review. Indian J Phys 83(4):493–502CrossRefGoogle Scholar
  67. 67.
    Lien S-Y, Wuu D-S, Yeh W-C, Liu J-C (2006) Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique. Sol Energy Mater Sol Cells 90(16):2710–2719CrossRefGoogle Scholar
  68. 68.
    Emslie AG, Bonner FT, Peck LG (1958) Flow of a viscous liquid on a rotating disk. J Appl Phys 29(5):858–862CrossRefGoogle Scholar
  69. 69.
    Herrera MA, Sirviö JA, Mathew AP, Oksman K (2016) Environmental friendly and sustainable gas barrier on porous materials: nanocellulose coatings prepared using spin-and dip-coating. Mater Des 93:19–25CrossRefGoogle Scholar
  70. 70.
    Zabihi F, Xie Y, Gao S, Eslamian M (2015) Morphology, conductivity, and wetting characteristics of PEDOT: PSS thin films deposited by spin and spray coating. Appl Surf Sci 338:163–177CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jamileh Shojaeiarani
    • 1
    Email author
  • Dilpreet S. Bajwa
    • 1
  • Kerry Hartman
    • 2
  1. 1.Department of Mechanical EngineeringNorth Dakota State UniversityFargoUSA
  2. 2.Department of sciencesNueta Hidatsa Sahnish CollegeNew TownUSA

Personalised recommendations