Application of Sustainable Nanocomposites for Water Purification Process

  • Hayelom Dargo BeyeneEmail author
  • Tekilt Gebregiorgs Ambaye


Nowadays, the rapid growth of industrialization, urbanization, population growth, and climate change have played a role in pollution of water resources. Lack of fresh and pure water is reflected as the main risk to many countries. In recent years, water purification methods are the focus and attention of the many scientist and governmental agencies. Scholars everywhere around the world are concentrating on nanotechnology centred water purification/treatment methods for efficient and effective sanitization of water bodies. Nanoscale composite materials have a huge potential to purify water in numerous ways, due to their high surface area, high chemical reactivity, excellent mechanical strength, and cost-effectiveness. Nanocomposites are intelligent to eliminate bacteria, viruses, and inorganic and organic pollutants from wastewater due to precise binding action (chelation, absorption, ion exchange). Nanocomposite materials are contributed an active role in water purification, such as metal nanocomposite, metal oxide nanocomposite, carbon nanocomposite, polymer nanocomposite and membranes nanocomposite.


Nanocomposites Contaminates Wastewater Water purification 


  1. 1.
    WHO/UNICEF (2014) Progress on drinking water and sanitation. Monitoring Programme update, WHO report, pp 1–18 Google Scholar
  2. 2.
    Dargo H, Ayaliew A, Kassa H (2017) Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustain Mater Technol 13:18–23Google Scholar
  3. 3.
    Liang XJ, Kumar A, Shi D, Cui D (2012) Nanostructures for medicine and pharmaceuticals. J Nanomaterials 2012:2012–2014Google Scholar
  4. 4.
    Kusior A, Klich-Kafel J, Trenczek-Zajac A, Swierczek K, Radecka M, Zakrzewska K (2013) TiO2-SnO2 nanomaterials for gas sensing and photocatalysis. J Eur Ceram Soc 33(12):2285–2290CrossRefGoogle Scholar
  5. 5.
    Diana S, Luigi R, Vincenzo V (2017) Progress in Nanomaterials Applications for Water Purification, In: Lofrano, Gi, Libralato, Giovanni, Brown, Jeanette (Eds) Nanotechnologies for Environmental Remediation, Applications and Implications, 1st ed, pp 1–24. Springer International Publishing AGGoogle Scholar
  6. 6.
    Lu H et al (2014) An overveiw of nanomaterials for water and wastewater treatment. J Environ Anal Chem 2016(2):10–12Google Scholar
  7. 7.
    Mueller NC et al (2012) Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ Sci Pollut Res 19(2):550–558CrossRefGoogle Scholar
  8. 8.
    Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117(12):1823–1831CrossRefGoogle Scholar
  9. 9.
    Kumar D, Parashar A, Chandrasekaran N, Mukherjee A (2017) The stability and fate of synthesized zero-valent iron nanoparticles in freshwater microcosm system. 3 Biotech 7(3):1–9Google Scholar
  10. 10.
    Fu F, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205CrossRefGoogle Scholar
  11. 11.
    Amin MT, Alazba AA, Manzoor U (2014) A review on removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng vol 2014:ID 825910CrossRefGoogle Scholar
  12. 12.
    Ghasemzadeh G, Momenpour M, Omidi F, Hosseini MR, Ahani M, Barzegari A (2014) Applications of nanomaterials in water treatment and environmental remediation. Front Environ Sci Eng 8(4):471–482CrossRefGoogle Scholar
  13. 13.
    Marková Z et al (2013) Air stable magnetic bimetallic Fe-Ag nanoparticles for advanced antimicrobial treatment and phosphorus removal. Environ Sci Technol 47(10):5285–5293CrossRefGoogle Scholar
  14. 14.
    Muradova GG, Gadjieva SR, Di L, Vilardi G (2016) Nitrates removal by bimetallic nanoparticles in water. Chem Eng Trans 47:205–210Google Scholar
  15. 15.
    Xiong Z, Lai B, Yang P, Zhou Y, Wang J, Fang S (2015) Comparative study on the reactivity of Fe/Cu bimetallic particles and zero valent iron (ZVI) under different conditions of N < inf > 2</inf > air or without aeration. J Hazard Mater 297:261–268CrossRefGoogle Scholar
  16. 16.
    Hoag GE, Collins JB, Holcomb JL, Hoag JR, Nadagouda MN, Varma RS (2009) Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. J Mater Chem 19(45):8671–8677CrossRefGoogle Scholar
  17. 17.
    Sun Z, Song G, Du R, Hu X (2017) Modification of a Pd-loaded electrode with a carbon nanotubes-polypyrrole interlayer and its dechlorination performance for 2,3-dichlorophenol. RSC Adv 7(36):22054–22062CrossRefGoogle Scholar
  18. 18.
    Arancibia-Miranda N et al (2016) Nanoscale zero valent supported by zeolite and montmorillonite: template effect of the removal of lead ion from an aqueous solution. J Hazard Mater 301:371–380CrossRefGoogle Scholar
  19. 19.
    Ling L, Pan B, Zhang WX (2014) Removal of selenium from water with nanoscale zero-valent iron: mechanisms of intraparticle reduction of Se (IV). Water Res 71(34):274–281Google Scholar
  20. 20.
    Ling L, Zhang WX (2015) Enrichment and encapsulation of uranium with iron nanoparticle. J Am Chem Soc 137(8):2788–2791CrossRefGoogle Scholar
  21. 21.
    Mahmoudi M, Serpooshan V (2012) Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat. ACS Nano 6(3):2656–2664CrossRefGoogle Scholar
  22. 22.
    Lara HH, Romero-Urbina DG, Pierce C, Lopez-Ribot JL, Arellano-Jiménez MJ, Jose-Yacaman M (2015) Effect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study. J Nanobiotechnol 13(1):1–12CrossRefGoogle Scholar
  23. 23.
    Morones JR et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353CrossRefGoogle Scholar
  24. 24.
    Surendhiran D, Sirajunnisa A, Tamilselvam K (2017) Silver–magnetic nanocomposites for water purification. Environ Chem Lett 15(3):367–386CrossRefGoogle Scholar
  25. 25.
    Kim JS et al (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3(1):95–101CrossRefGoogle Scholar
  26. 26.
    Xiu Z-M, Ma J, Alvarez PJJ (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45(20):9003–9008CrossRefGoogle Scholar
  27. 27.
    Mlalila NG, Swai HS, Hilonga A, Kadam DM (2017) Antimicrobial dependence of silver nanoparticles on surface plasmon resonance bands against Escherichia coli. Nanotechnol Sci Appl 10:1–9CrossRefGoogle Scholar
  28. 28.
    Ishida H, Campbell S, Blackwell J (2000) General approach to nanocomposite preparation. Chem Mater 12(5):1260–1267CrossRefGoogle Scholar
  29. 29.
    Tapas RS (2017) Polymer Nanocomposites for Environmental Applications. In: Deba KT, Bibhu PS (Eds) Properties and Applications of Polymer Nanocomposites, Clay and Carbon Based Polymer Nanocomposites, 1st ed, pp 77-99. Springer-Verlag GmbH GermanyGoogle Scholar
  30. 30.
    Gehrke I, Geiser A, Somborn-Schulz A (2015) Innovations in nanotechnology for water treatment. Nanotechnol Sci Appl 8:1–17CrossRefGoogle Scholar
  31. 31.
    Sharma G, Amit K, Shweta, Mu N, Ram PD, Zeid AA, Genene TM (2017) Novel development of nanoparticles to bimetallic nanoparticles and their composites: a review. J King Saud Univ Sci.
  32. 32.
    Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38(10–11):1629–1652CrossRefGoogle Scholar
  33. 33.
    de Azeredo HMC (2009) Nanocomposites for food packaging applications. Food Res Int 42(9):1240–1253CrossRefGoogle Scholar
  34. 34.
    Othman SH (2014) Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agric Agric Sci Procedia 2:296–303Google Scholar
  35. 35.
    Zare Y, Shabani I (2016) Polymer/metal nanocomposites for biomedical applications. Mater Sci Eng C 60:195–203CrossRefGoogle Scholar
  36. 36.
    Veprek S, Veprek-Heijman MJG (2008) Industrial applications of superhard nanocomposite coatings. Surf Coat Technol 202(21):5063–5073CrossRefGoogle Scholar
  37. 37.
    Zhang R et al (2016) Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem Soc Rev 45(21):5888–5924CrossRefGoogle Scholar
  38. 38.
    Galiano F et al (2015) A step forward to a more efficient wastewater treatment by membrane surface modification via polymerizable bicontinuous microemulsion. J Membr Sci 482:103–114CrossRefGoogle Scholar
  39. 39.
    Manawi Y, Kochkodan V, Hussein MA, Khaleel MA, Khraisheh M, Hilal N (2016) Can carbon-based nanomaterials revolutionize membrane fabrication for water treatment and desalination? Desalination 391:69–88CrossRefGoogle Scholar
  40. 40.
    Senusi F, Shahadat M, Ismail S, Hamid SA (2018) Recent advancement in membrane technology for water purification, In : Oves M (ed) Modern age environmental problems and their remediation, Recent Advancement, 1st edn. Springer International Publishing AG, pp 1–237Google Scholar
  41. 41.
    Zhang Y et al (2016) Nanomaterials-enabled water and wastewater treatment. NanoImpact 3–4:22–39CrossRefGoogle Scholar
  42. 42.
    Lee A, Elam JW, Darling SB (2016) Membrane materials for water purification: design, development, and application. Environ Sci Water Res Technol 2(1):17–42CrossRefGoogle Scholar
  43. 43.
    Botes M, Cloete TE (2010) The potential of nanofibers and nanobiocides in water purification. Crit Rev Microbiol 36(1):68–81CrossRefGoogle Scholar
  44. 44.
    Peter-Varbanets M, Zurbrügg C, Swartz C, Pronk W (2009) Decentralized systems for potable water and the potential of membrane technology. Water Res 43(2):245–265CrossRefGoogle Scholar
  45. 45.
    Lin S, Huang R, Cheng Y, Liu J, Lau BLT, Wiesner MR (2013) Silver nanoparticle-alginate composite beads for point-of-use drinking water disinfection. Water Res 47(12):3959–3965CrossRefGoogle Scholar
  46. 46.
    Yahyaei B, Azizian S, Mohammadzadeh A, Pajohi-Alamoti M (2015) Chemical and biological treatment of waste water with a novel silver/ordered mesoporous alumina nanocomposite. J Iran Chem Soc 12(1):167–174CrossRefGoogle Scholar
  47. 47.
    Firdhouse MJ, Lalitha P (2016) Nanosilver-decorated nanographene and their adsorption performance in waste water treatment. Bioresour Bioprocess 3(1):12CrossRefGoogle Scholar
  48. 48.
    Liu X, Chen Z, Chen Z, Megharaj M, Naidu R (2013) Remediation of direct black G in wastewater using kaolin-supported bimetallic Fe/Ni nanoparticles. Chem Eng J 223:764–771CrossRefGoogle Scholar
  49. 49.
    Lateef A, Nazir R (2017) Metal nanocomposites : synthesis, characterization and their applications, In: P. DS, (ed) Science and applications of tailored nanostructures, 1st edn. One central press, Italy, pp 239–240Google Scholar
  50. 50.
    Ray C, Pal T (2017) Recent advances of metal-metal oxide nanocomposites and their tailored nanostructures in numerous catalytic applications. J Mater Chem A 5(20):9465–9487CrossRefGoogle Scholar
  51. 51.
    Sankararamakrishnan N, Jaiswal M, Verma N (2014) Composite nanofloral clusters of carbon nanotubes and activated alumina: an efficient sorbent for heavy metal removal. Chem Eng J 235:1–9CrossRefGoogle Scholar
  52. 52.
    Ihsanullah, Asmaly HA, Saleh TA, Laoui T, Gupta VK, Atieh MA (2015) Enhanced adsorption of phenols from liquids by aluminum oxide/carbon nanotubes: comprehensive study from synthesis to surface properties. J Mol Liq 206(February):176–182CrossRefGoogle Scholar
  53. 53.
    Liang J et al (2015) Facile synthesis of alumina-decorated multi-walled carbon nanotubes for simultaneous adsorption of cadmium ion and trichloroethylene. Chem Eng J 273:101–110CrossRefGoogle Scholar
  54. 54.
    Mallakpour S, Khadem E (2016) Carbon nanotube–metal oxide nanocomposites: fabrication, properties and applications. Chem Eng J 302(May):344–367CrossRefGoogle Scholar
  55. 55.
    Ming-Zheng G, Chun-Yan C, Jian-Ying H, Shu-Hui L, Song-Nan Z, Shu D, Qing-Song L, Ke-Qin Z, Yue-Kun L (2016) Synthesis, modification, and photo/photoelectrocatalytic degradation applications of TiO2 nanotube arrays: a review. Nanotechnol Rev 5(1).
  56. 56.
    Silva CG, Faria JL (2010) Photocatalytic oxidation of benzene derivatives in aqueous suspensions: synergic effect induced by the introduction of carbon nanotubes in a TiO2 matrix. Appl Catal B Environ 101(1–2):81–89CrossRefGoogle Scholar
  57. 57.
    Martínez C, Canle LM, Fernández MI, Santaballa JA, Faria J (2011) Kinetics and mechanism of aqueous degradation of carbamazepine by heterogeneous photocatalysis using nanocrystalline TiO2, ZnO and multi-walled carbon nanotubes-anatase composites. Appl Catal B Environ 102(3–4):563–571CrossRefGoogle Scholar
  58. 58.
    Li J, Zhen D, Sui G, Zhang C, Deng Q, Jia L (2012) Nanocomposite of Cu–TiO < SUB > 2</SUB > –SiO < SUB > 2</SUB > with high photoactive performance for degradation of rhodamine B dye in aqueous wastewater. J Nanosci Nanotechnol 12(8):6265–6270CrossRefGoogle Scholar
  59. 59.
    Khan M et al (2015) Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. J Mater Chem A 3(37):18753–18808CrossRefGoogle Scholar
  60. 60.
    Ma J, Zhang J, Xiong Z, Yong Y, Zhao XS (2011) Preparation, characterization and antibacterial properties of silver-modified graphene oxide. J Mater Chem 21(10):3350–3352CrossRefGoogle Scholar
  61. 61.
    Chandra V, Park J, Chun Y, Lee JW, Hwang IC, Kim KS (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4(7):3979–3986CrossRefGoogle Scholar
  62. 62.
    Geng Z et al (2012) Highly efficient dye adsorption and removal: a functional hybrid of reduced graphene oxide-Fe3O4 nanoparticles as an easily regenerative adsorbent. J Mater Chem 22(8):3527–3535CrossRefGoogle Scholar
  63. 63.
    Saad AHA, Azzam AM, El-Wakeel ST, Mostafa BB, Abd El-latif MB (2018) Removal of toxic metal ions from wastewater using ZnO@Chitosan core-shell nanocomposite. Environ Nanotechnol Monit Manag 9(August):67–75Google Scholar
  64. 64.
    Singh P et al (2018) Specially designed B4C/SnO2 nanocomposite for photocatalysis: traditional ceramic with unique properties. Appl Nanosci 8(1–2):1–9CrossRefGoogle Scholar
  65. 65.
    Huang L, He M, Chen B, Hu B (2018) Magnetic Zr-MOFs nanocomposites for rapid removal of heavy metal ions and dyes from water. Chemosphere 199:435–444CrossRefGoogle Scholar
  66. 66.
    Gong JL et al (2009) Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J Hazard Mater 164(2–3):1517–1522CrossRefGoogle Scholar
  67. 67.
    Chen L et al (2016) Facile synthesis of mesoporous carbon nanocomposites from natural biomass for efficient dye adsorption and selective heavy metal removal. RSC Adv 6(3):2259–2269CrossRefGoogle Scholar
  68. 68.
    Inyang M, Gao B, Zimmerman A, Zhang M, Chen H (2014) Synthesis, characterization, and dye sorption ability of carbon nanotube-biochar nanocomposites. Chem Eng J 236:39–46CrossRefGoogle Scholar
  69. 69.
    Muneeb M, Zahoor M, Muhammad B, AliKhan F, Ullah R, AbdEI-Salam NM (2017) Removal of heavy metals from drinking water by magnetic carbon nanostructures prepared from biomass. J Nanomater 2017:10Google Scholar
  70. 70.
    Tian T et al (2014) Graphene-based nanocomposite as an effective, multifunctional, and recyclable antibacterial agent. ACS Appl Mater Interfaces 6(11):8542–8548CrossRefGoogle Scholar
  71. 71.
    Zarei M (2017) Application of nanocomposite polymer hydrogels for ultra-sensitive fluorescence detection of proteins in gel electrophoresis. TrAC - Trends Anal Chem 93:7–22CrossRefGoogle Scholar
  72. 72.
    Zhao S et al (2012) Performance improvement of polysulfone ultrafiltration membrane using well-dispersed polyaniline-poly(vinylpyrrolidone) nanocomposite as the additive. Ind Eng Chem Res 51(12):4661–4672CrossRefGoogle Scholar
  73. 73.
    Pan B, Xu J, Wu B, Li Z, Liu X (2013) Enhanced removal of fluoride by polystyrene anion exchanger supported hydrous zirconium oxide nanoparticles. Environ Sci Technol 47(16):9347–9354CrossRefGoogle Scholar
  74. 74.
    Settanni, G, Zhou, J, Suo, T, Schöttler, S, Landfester, K, Schmid, F, Mailänder, V (2017) Protein corona composition of poly (ethylene glycol)- and poly (phosphoester)-coated nanoparticles correlates strongly with the amino acid composition of the protein surface. Nanoscale 9(6):2138–2144CrossRefGoogle Scholar
  75. 75.
    Kelta B, Taddesse AM, Yadav OP, Diaz I, Mayoral Á (2017) Nano-crystalline titanium (IV) tungstomolybdate cation exchanger: Synthesis, characterization and ion exchange properties. J Environ Chem Eng 5(1):1004–1014CrossRefGoogle Scholar
  76. 76.
    Zhang L, Liu J, Guo X (2018) Investigation on mechanism of phosphate removal on carbonized sludge adsorbent. J Environ Sci (China) 64:335–344CrossRefGoogle Scholar
  77. 77.
    Vunain E, Mishra AK, Mamba BB (2016) Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: a review. Int J Biol Macromol 86:570–586CrossRefGoogle Scholar
  78. 78.
    Djerahov L, Vasileva P, Karadjova I, Kurakalva RM, Aradhi KK (2016) Chitosan film loaded with silver nanoparticles - Sorbent for solid phase extraction of Al (III), Cd (II), Cu (II), Co (II), Fe (III), Ni (II), Pb (II) and Zn (II). Carbohydr Polym 147(March):45–52CrossRefGoogle Scholar
  79. 79.
    Saxena S, Saxena U (2016) Development of bimetal oxide doped multifunctional polymer nanocomposite for water treatment. Int Nano Lett 6(4):223–234CrossRefGoogle Scholar
  80. 80.
    Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47(12):3931–3946CrossRefGoogle Scholar
  81. 81.
    Zayed A et al (2013) Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohydr Polym 91(1):322–332CrossRefGoogle Scholar
  82. 82.
    Khaydarov RA, Khaydarov RR, Gapurova O (2010) Water purification from metal ions using carbon nanoparticle-conjugated polymer nanocomposites. Water Res 44(6):1927–1933CrossRefGoogle Scholar
  83. 83.
    Piri S, Zanjani ZA, Piri F, Zamani A, Yaftian M, Davari M (2016) Potential of polyaniline modified clay nanocomposite as a selective decontamination adsorbent for Pb (II) ions from contaminated waters; kinetics and thermodynamic study. J Environ Health Sci Eng 14(1):1–10CrossRefGoogle Scholar
  84. 84.
    Nithya R, Sudha PN (2017) Removal of heavy metals from tannery effluent using chitosan-g-poly (butyl acrylate)/bentonite nanocomposite as an adsorbent. Text Cloth Sustain 2(1):7CrossRefGoogle Scholar
  85. 85.
    Yin J, Deng B (2015) Polymer-matrix nanocomposite membranes for water treatment. J Membr Sci 479:256–275CrossRefGoogle Scholar
  86. 86.
    Shen YX, Saboe PO, Sines IT, Erbakan M, Kumar M (2014) Biomimetic membranes: a review. J Memb Sci 454:359–381CrossRefGoogle Scholar
  87. 87.
    Hernández S, Saad A, Ormsbee L, Bhattacharyya D (2016) Nanocomposite and responsive membranes for water treatment, In: Hankins NP, Singh R (ed) Emerging membrane technology for sustainable water treatment, 1st edn. Elsevier B.V., USA, pp 389–431CrossRefGoogle Scholar
  88. 88.
    Nasreen SAAN, Sundarrajan S, Nizar SAS, Balamurugan R, Ramakrishna S (2013) Advancement in electrospun nanofibrous membranes modification and their application in water treatment. Membr (Basel) 3(4):266–284Google Scholar
  89. 89.
    Fard AK et al (2018) Inorganic membranes: preparation and application for water treatment and desalination. Mater (Basel) 11(1):74CrossRefGoogle Scholar
  90. 90.
    Razzaq H, Nawaz H, Siddiqa A, Siddiq M, Qaisar S (2016) Madridge a brief review on nanocomposites based on PVDF with nanostructured TiO2 as filler. J Nanotechnol 1(1):29–35Google Scholar
  91. 91.
    Pant HR et al (2014) One-step fabrication of multifunctional composite polyurethane spider-web-like nanofibrous membrane for water purification. J Hazard Mater 264:25–33CrossRefGoogle Scholar
  92. 92.
    Daraei P et al (2012) Novel polyethersulfone nanocomposite membrane prepared by PANI/Fe 3O 4 nanoparticles with enhanced performance for Cu (II) removal from water. J Membr Sci 415–416:250–259CrossRefGoogle Scholar
  93. 93.
    Tetala KKR, Stamatialis DF (2013) Mixed matrix membranes for efficient adsorption of copper ions from aqueous solutions. Sep Purif Technol 104:214–220CrossRefGoogle Scholar
  94. 94.
    Lopez Goerne TM (2011) Study of Bacterial Sensitivity to Ag-TiO2 Nanoparticles. J Nanomed Nanotechnol s5(01):2CrossRefGoogle Scholar
  95. 95.
    Liu S, Fang F, Wu J, Zhang K (2015) The anti-biofouling properties of thin-film composite nanofiltration membranes grafted with biogenic silver nanoparticles. Desalination 375(November):121–128CrossRefGoogle Scholar
  96. 96.
    Tewari PK (2016) Nanocomposite membrane technology, 1st edn. CRC Press Taylor & Francis Group, Boca RatonGoogle Scholar
  97. 97.
    Ladewig B, Al-Shaeli MNZ (2017) Fundamental of membrane process. In: Ladewig B, Al-Shaeli MNZ (eds) Fundamentals of membrane bioreactors, 1st edn. Springer Nature Singapore, Singapore, pp 13–38CrossRefGoogle Scholar
  98. 98.
    Jamshidi Gohari R, Halakoo E, Nazri NAM, Lau WJ, Matsuura T, Ismail AF (2014) Improving performance and antifouling capability of PES UF membranes via blending with highly hydrophilic hydrous manganese dioxide nanoparticles. Desalination 335(1):87–95CrossRefGoogle Scholar
  99. 99.
    Jamshidi Gohari R, Lau WJ, Matsuura T, Ismail AF (2013) Fabrication and characterization of novel PES/Fe-Mn binary oxide UF mixed matrix membrane for adsorptive removal of as (III) from contaminated water solution. Sep Purif Technol 118:64–72CrossRefGoogle Scholar
  100. 100.
    Akar N, Asar B, Dizge N, Koyuncu I (2013) Investigation of characterization and biofouling properties of PES membrane containing selenium and copper nanoparticles. J Membr Sci 437:216–226CrossRefGoogle Scholar
  101. 101.
    Manjarrez Nevárez L et al (2011) Biopolymers-based nanocomposites: membranes from propionated lignin and cellulose for water purification. Carbohydr Polym 86(2):732–741CrossRefGoogle Scholar
  102. 102.
    Jeong BH et al (2007) Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J Membr Sci 294(1–2):1–7CrossRefGoogle Scholar
  103. 103.
    Pendergast MM, Hoek EMV (2011) A review of water treatment membrane nanotechnologies. Energy Environ Sci 4(6):1946–1971CrossRefGoogle Scholar
  104. 104.
    Lind ML, Suk DE, Nguyen TV, Hoek EMV (2010) Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance. Environ Sci Technol 44(21):8230–8235CrossRefGoogle Scholar
  105. 105.
    Maximous N, Nakhla G, Wong K, Wan W (2010) Optimization of Al2O3/PES membranes for wastewater filtration. Sep Purif Technol 73(2):294–301CrossRefGoogle Scholar
  106. 106.
    Pendergast MTM, Nygaard JM, Ghosh AK, Hoek EMV (2010) Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction. Desalination 261(3):255–263CrossRefGoogle Scholar
  107. 107.
    Qin D, Liu Z, Delai Sun D, Song X, Bai H (2015) A new nanocomposite forward osmosis membrane custom-designed for treating shale gas wastewater. Sci Rep 5(January):1–14Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hayelom Dargo Beyene
    • 1
    Email author
  • Tekilt Gebregiorgs Ambaye
    • 2
  1. 1.Department of ChemistryAdigrat UniversityAdigratEthiopia
  2. 2.Department of ChemistryMekelle UniversityMekelleEthiopia

Personalised recommendations