Advertisement

Fabrication Methods of Sustainable Hydrogels

  • Cédric Delattre
  • Fiona Louis
  • Mitsuru Akashi
  • Michiya Matsusaki
  • Philippe Michaud
  • Guillaume PierreEmail author
Chapter

Abstract

The interest received on hydrogels probably reflects one of the greatest challenges for the two last decades. Able to hold and release solvents and builds, these three-dimensional polymeric structures work as a network able to reversibly change in response to small physico-chemical modifications in their surroundings. Considering the fantastic amount of available techniques described in the literature, a brief overview of the fabrication methodology is synthesized from physical/chemical cross-linking or polymerization grafting to radiation cross-linking. Thus, this review explores the fabrication and recent applications of hydrogels in various fields including imaging, optics, diagnostics, drug delivery systems or tissue engineering. Extensive use of hydrogels raises some questions about life cycle assessment and how fabricating and/or using sustainable and innovative versions of the intelligent hydrogels of tomorrow.

Keywords

Hydrogel Fabrication Sustainable Coating system Cross-linking Polysaccharide 

List of Abbreviations

2D

Two dimensions

3D

Three dimensions/three dimensional

4D

Four dimensional

AA

Acrylic acid

AD

Adipocytes

ADSC

Adipose-derived stem cells

BMP-2

Bone morphogenetic proteins 2

CC

Cell coating

CLSM

Confocal laser scanning microscopy

DMEM

Dulbecco’s modified eagle medium

ECM(s)

Extracellular matrices

EDC

Ethyl carbodiimide

EG

Ethylene glycol

EGDMA

Ethylene glycol dimethacrylate

FBS

Fetal bovine serum

FN

Fibronectin

G

Gelatin

HEMA

Hydroxyethyl methacrylate

HUVECs

Human umbilical vein endothelial cells

IPN

Interpenetrating polymeric

iPS-CMs

Induced pluripotent stem cell-derived cardiomyocytes

LbL

Layer-by-layer

LCA

Life-cycle assessment

LECs

Lymph epithelial cells

MBSCs

Bone marrow stromal cells

MCS

Maleic chitosan derivatives

MMT

Montmorillonite

NHDFs

Normal human dermal fibroblasts

PAAm

Polyacrylamide

PBS

Phosphate buffer saline

PEG

Poly(ethylene glycol)

PEGDA

Poly(ethylene glycol) diacrylate

PLGA

Poly(lactic-co-glycolic acid)

PPGs

Polyacrylamide particle gels

PPO-PEO

Poly(propylene oxide)-poly(ethylene oxide)

PVA

Poly (vinyl) alcohol

PVP

Poly (vinyl pyrrolidone)

PVSA

Poly-vinylsulfonic acid

RGD

Arginine-glycine-aspartic acid

TPVA

Thiol-terminated poly (vinyl alcohol)

VAc

Vinyl acetate

Notes

Acknowledgements

This research was supported by JST-PRESTO (15655131) and a Grant-in-Aid for Scientific Research (B) (26282138 and 17H02099). The authors also thank the program “Exploration Japon 2018” from Campus France, SST and SCAC (Ambassade de France au Japon).

References

  1. 1.
    Ganguly K, Chaturvedi K, More UA, Nadagouda MN, Aminabhavi TM (2014) Polysaccharide-based micro/nanohydrogels for delivering macromolecular therapeutics. J Control Release 193:162–173CrossRefGoogle Scholar
  2. 2.
    Mastropietro DJ, Omidian H, Park K (2012) Drug delivery applications for superporous hydrogels. Expert Opin Drug Deliv 9:71–89CrossRefGoogle Scholar
  3. 3.
    Calo E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Euro Polym J 65:252–267CrossRefGoogle Scholar
  4. 4.
    Ahmed EM (2015) Hydrogels: preparation, characterizations and applications: a review. J Adv Res 6:105–121CrossRefGoogle Scholar
  5. 5.
    Singhal R, Gupta K (2016) A review: tailor-made hydrogel structures (classifications and synthesis parameters). Polym Plast Technol Eng 55:54–70CrossRefGoogle Scholar
  6. 6.
    Chai Q, Jiao Y, Yu X (2017) Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels 3, 6.  https://doi.org/10.3390/gels3010006CrossRefGoogle Scholar
  7. 7.
    Bescrades IG, Demirtas TT, Durukan MD et al (2015) Microwave-assisted fabrication of chitosan-hydroxyapatite superporous hydrogel composites as bone scaffold. J Tissue Eng Regen Med 9:1233–1246CrossRefGoogle Scholar
  8. 8.
    Salimi-Kenari H, Mollaie F, Dashtimoghadam E et al (2018) Effects of chain length of the cross-linking agent on rheological and swelling characteristics of dextran hydrogels. Carbohydr Polym 181:141–149CrossRefGoogle Scholar
  9. 9.
    Tavsanli B, Okay O (2017) Mechanically strong hyaluronic acid hydrogels with an interpenetrated network structure. Euro Polym J 94:185–195CrossRefGoogle Scholar
  10. 10.
    Maisani M, Ziane S, Ehret C et al (2018) A new composite hydrogel combining the biological properties of collagen with the mechanical properties of a supramolecular scaffold for bone tissue engineering. J Tissue Eng Regen Med 12:1489–1500CrossRefGoogle Scholar
  11. 11.
    Varaprasad K, Rahavendra GM, Jayaramudu T et al (2017) A mini review on hydrogels classification and recent developements in miscellaneous applucations. Mat Sci Eng C 79:958–971CrossRefGoogle Scholar
  12. 12.
    Mati-Baouche N, Elchinger PH, de Baynast H, Pierre G, Delattre C, Michaud P (2014) Chitosan as an adhesive. Eur Polym J 60:198–213CrossRefGoogle Scholar
  13. 13.
    Shonnard DR, Kicherer A, Saling P (2003) Industrial applications using BASF ecoefficiency analysis: perspectives on green engineering principles. Environ Sci Technol 37:5340–5348CrossRefGoogle Scholar
  14. 14.
    Vink ETH, Rábago KR, Glassner DA, Gruber P (2003) Applications of life cycle assessment to nature works polylactide (PLA) production. Polym Degr Stab 80:403–19CrossRefGoogle Scholar
  15. 15.
    Clark JH (2008) Green chemistry: today (and tomorrow). Green Chem 8:17–21CrossRefGoogle Scholar
  16. 16.
    Tian H, Tang Z, Zhuang X et al (2012) Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 37:237–280CrossRefGoogle Scholar
  17. 17.
    Takashi L, Hatsumi T, Makoto M et al (2007) Synthesis of porous poly(N-isopropylacrylamide) gel beads by sedimentation polymerization and their morphology. J Appl Polym Sci 104:842CrossRefGoogle Scholar
  18. 18.
    Yang L, Chu JS, Fix JA (2002) Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. Int J Pharm 235:1–15CrossRefGoogle Scholar
  19. 19.
    Zuluaga M, Gregnanin G, Cencetti C, Di Meo C, Gueguen V, Letourneur D, Meddahi-Pelle A, Pavon-Djavid G, Matricardi P (2018) PVA/dextran hydrogel patches as delivery system of antioxydant astaxanthin: a cardiovascular approach. Biomed Mater 13:1–13Google Scholar
  20. 20.
    Maolin Z, Jun L, Min Y et al (2000) The swelling behaviour of radiation prepared semi-interpenetrating polymer networks composed of polyNIPAAm and hydrophilic polymers. Radiat Phys Chem 58:397–400CrossRefGoogle Scholar
  21. 21.
    Hacker MC, Mikos AG (2011) Synthetic polymers. In: Atala A, Lanza R, Thomson JA, Nerem RM (eds) Principles of regenerative medicine, 2nd edn. Academic Press, USA, pp 587–622CrossRefGoogle Scholar
  22. 22.
    Ahmed EM, Aggor FS, Awad AM et al (2013) An innovative method for preparation of nanometal hydroxide superabsorbent hydrogel. Carbohydr Polym 91(2):693–698CrossRefGoogle Scholar
  23. 23.
    Akhtar MF, Hanif M, Ranjha NM (2016) Methods of synthesis of hydrogels: a review. Saudi Pharm J 24(5):554–559CrossRefGoogle Scholar
  24. 24.
    Liu CY, Matsusaki M, Akashi M (2015) Control of cell-cell distance and cell densities in millimeter-sized 3D tissues constructed by collagen nanofiber coating techniques. ACS Biomater Sci Eng 1:639–645CrossRefGoogle Scholar
  25. 25.
    Yuangang Z, Ying Z, Xiuhua Z et al (2012) Preparation and characterization of chitosan–polyvinyl alcohol blend hydrogels for the controlled release of nano-insulin. Int J Biol Macromol 50(1):82–87CrossRefGoogle Scholar
  26. 26.
    Brannon-Peppas L, Harland RS (1991) Absorbent polymer technology. J Control Release 17(3):297–298CrossRefGoogle Scholar
  27. 27.
    Li Y, Huang G, Zhang X et al (2013) Magnetic hydrogels and their potential biomedical applications. Adv Funct Mater 23(6):660–672CrossRefGoogle Scholar
  28. 28.
    Matsusaki M, Yoshida H, Akashi M (2007) The construction of 3D-engineered tissues composed of cells and extracellular matrices by hydrogel template approach. Biomaterials 28:2729–2737CrossRefGoogle Scholar
  29. 29.
    Gobbi A, Whyte GP (2016) One-stage cartilage repair using a hyaluronic acid-based scaffold with activated bone marrow-derived mesenchymal stem cells compared with microfracture: five-year follow-up. Am J Sports Med 44(11):2846–2854CrossRefGoogle Scholar
  30. 30.
    Mahinroosta M, Farsangi ZJ, Allahverdi A et al (2018) Hydrogels as intelligent materials: a brief review of synthesis, properties and applications. Mat Tod Chem 8:42–55Google Scholar
  31. 31.
    Pierschbacher MD, Ruoslahti E (1987) Influence of stereochemistry of the sequence Arg-Gly-Asp-Xaa on binding specificity in cell adhesion. J Biol Chem 262:17294–17298Google Scholar
  32. 32.
    Chang PC, Liu BY, Liu CM et al (2007) Bone tissue engineering with novel rhBMP2-PLLA composite scaffolds. J Biomed Mater Res A 81:771–780.  https://doi.org/10.1002/jbm.a.31031CrossRefGoogle Scholar
  33. 33.
    Recknor JB, Sakaguchi DS, Mallapragada SK (2006) Directed growth and selective differentiation of neural progenitor cells on micropatterned polymer substrates. Biomaterials 27:4098–4108.  https://doi.org/10.1016/j.biomaterials.2006.03.029CrossRefGoogle Scholar
  34. 34.
    Liss M, Petersen B, Wolf H et al (2002) An aptamer-based quartz crystal protein biosensor. Anal Chem 74:4488–4495CrossRefGoogle Scholar
  35. 35.
    Decher G (1997) Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 277:1232–1237.  https://doi.org/10.1126/science.277.5330.1232CrossRefGoogle Scholar
  36. 36.
    Decher G, Hong JD (2011) Buildup of ultrathin multilayer films by a self-assembly process, 1 consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Makromol Chem Macromol Symp 46:321–327.  https://doi.org/10.1002/masy.19910460145CrossRefGoogle Scholar
  37. 37.
    Ruoslahti E, Pierschbacher MD (1987) New perspectives in cell adhesion: RGD and integrins. Science 238:491–497CrossRefGoogle Scholar
  38. 38.
    Arnaout MA, Mahalingam B, Xiong J-P (2005) Integrin structure, allostery, and bidirectional signaling. Annu Rev Cell Dev Biol 21:381–410CrossRefGoogle Scholar
  39. 39.
    Campbell ID, Humphries MJ (2011) Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol 3:1–15.  https://doi.org/10.1101/cshperspect.a004994CrossRefGoogle Scholar
  40. 40.
    Nagae M, Re S, Mihara E et al (2012) Crystal structure of α5β1 integrin ectodomain: atomic details of the fibronectin receptor. J Cell Biol 197:131–140.  https://doi.org/10.1083/jcb.201111077CrossRefGoogle Scholar
  41. 41.
    Liu P, Zhai M, Li J et al (2002) Radiation preparation and swelling behavior of sodium carboxymethyl cellulose hydrogels. Radiat Phys Chem 63(3–6):525–528CrossRefGoogle Scholar
  42. 42.
    Said HM, Alla SGA, El-Naggar AWM (2004) Synthesis and characterization of novel gels based on carboxymethyl cellulose/acrylic acid prepared by electron beam irradiation. React Funct Polym 61(3):397–404CrossRefGoogle Scholar
  43. 43.
    Sanson N, Rieger J (2010) Synthesis of nanogels/microgels by conventional and controlled radical crosslinking copolymerization. Polym Chem 1:965–977CrossRefGoogle Scholar
  44. 44.
    Sperinde JJ, Griffith LG (1997) Synthesis and characterization of enzymatically-crosslinked-poly(ethylene glycol) hydrogels. Macromolecules 30:5255–5264CrossRefGoogle Scholar
  45. 45.
    Chen X, Martin BD, Neubauer TK et al (1995) Enzymatic and chemoenzymatic approaches to synthesis of sugar-based polymer and hydrogels. Carbohydr Polym 28:15–21CrossRefGoogle Scholar
  46. 46.
    Raia NR, Partlow BP, McGill M et al (2017) Enzymatically crosslinked silk-hyaluronic acid hydrogels. Biomaterials 131:58–67CrossRefGoogle Scholar
  47. 47.
    Nishiguchi A, Matsusaki M, Asano Y et al (2014) Effects of angiogenic factors and 3D-microenvironments on vascularization within sandwich cultures. Biomaterials 35:4739–4748.  https://doi.org/10.1016/j.biomaterials.2014.01.079CrossRefGoogle Scholar
  48. 48.
    Nishiguchi A, Yoshida H, Matsusaki M et al (2011) Rapid construction of three-dimensional multilayered tissues with endothelial tube networks by the cell-accumulation technique. Adv Mater 23:3506–3510.  https://doi.org/10.1002/adma.201101787CrossRefGoogle Scholar
  49. 49.
    Matsusaki M, Akashi M (2014) Control of extracellular microenvironments using polymer/protein nanofilms for the development of three-dimensional human tissue chips. Polym J 46:524–536.  https://doi.org/10.1038/pj.2014.20CrossRefGoogle Scholar
  50. 50.
    Stockwell RA (1967) The cell density of human articular and costal cartilage. J Anat 101:753–763Google Scholar
  51. 51.
    Liu CY, Matsusaki M, Akashi M (2014) The construction of cell-density controlled three-dimensional tissues by coating micrometer-sized collagen fiber matrices on single cell surfaces. RSC Adv 4:46141–46144.  https://doi.org/10.1039/C4RA09085CCrossRefGoogle Scholar
  52. 52.
    Zhou Y, Zhao S, Zhang C et al (2018) Photopolymerized maleilated chitosan/thiol-terminated poly (vinyl alcohol) hydrogels as potential tissue engineering scaffolds. Carbohydr Polym 184:383–389CrossRefGoogle Scholar
  53. 53.
    Lu M, Liu Y, Huang YC et al (2018) Fabrication of photo-crosslinkable glycol chitosan hydrogel as a tissue adhesive. Carbohydr Polym 181:668–674CrossRefGoogle Scholar
  54. 54.
    Broguiere N, Isenmann L, Zenobi-Wong M (2016) Novel enzymatically cross-linked hyaluronan hydrogels support the formation of 3D neuronal networks. Biomaterials 99:47–55CrossRefGoogle Scholar
  55. 55.
    Yan HJ, Casalini T, Hulsart-Billström G et al (2018) Synthetic design of growth factor sequestering extracellular matrix mimetic hydrogel for promoting in vivo bone formation. Biomaterials 161:190–202CrossRefGoogle Scholar
  56. 56.
    Kim S, Cui ZK, Kim PJ, Jung LY, Lee M (2018) Design of hydrogels to stabilize and enhance bone morphogenetic protein activity by heparin mimetics. Acta Biomater (in press).  https://doi.org/10.1016/j.actbio.2018.03.034CrossRefGoogle Scholar
  57. 57.
    Amano Y, Nishiguchi A, Matsusaki M et al (2016) Development of vascularized iPSC derived 3D-cardiomyocyte tissues by filtration Layer-by-Layer technique and their application for pharmaceutical assays. Acta Biomater 33:110–121CrossRefGoogle Scholar
  58. 58.
    Ullah F, Othman MBH, Javed F et al (2015) Classification, processing and application of hydrogels: a review. Mat Sci Eng C 57:414–433 CrossRefGoogle Scholar
  59. 59.
    Pierre G, Punta C, Delattre C et al (2017) TEMPO-mediated oxidation of polysaccharides: an ongoing story. Carbohydr Polym 165:71–85CrossRefGoogle Scholar
  60. 60.
    Anisha S, Kumar SP, Kumar GV et al (2010) Hydrogels: a review. Int J Pharmaceut Sci Rev Res 4(2):97Google Scholar
  61. 61.
    Tylman M, Pieklarz K, Owczarz P et al (2018) Structure of chitosan thermosensitive gels containing graphene oxide. J Mol Struc 1161:530–535.  https://doi.org/10.1016/j.molstruc.2018.02.065CrossRefGoogle Scholar
  62. 62.
    Alshememry AK, El-Tokhy SS, Unsworth LD (2017) Using properties of tumor microenvironments for controlling local, on-demand delivery from biopolymer-based nanocarriers. Curr Pharm Des 23:5358–5391.  https://doi.org/10.2174/1381612823666170522100545CrossRefGoogle Scholar
  63. 63.
    Qin XH, Wang X, Rottmar M et al (2018) Near-infrared light-sensitive polyvinyl alcohol hydrogel photoresist for spatiotemporal control of cell-instructive 3D microenvironments. Adv Mat 30(1705564).  https://doi.org/10.1002/adma.201705564CrossRefGoogle Scholar
  64. 64.
    Tan Z, Parisi C, Di Silvio L et al (2017) Cryogenic 3D Printing of super soft hydrogels. Sci Reports 7(16668).  https://doi.org/10.1038/s41598-017-16668-9
  65. 65.
    Karis DG, Ono RJ, Zhang M et al (2017) Cross-linkable multi-stimuli responsive hydrogel inks for direct-write 3D printing. Polym Chem 8:4199–4206CrossRefGoogle Scholar
  66. 66.
    Agarwala S, Lee JM, Ng WL (2018) A novel 3D bioprinted flexible and biocompatible hydrogel bioelectronic platform. Biosens Bioelec 102:365–371CrossRefGoogle Scholar
  67. 67.
    Lv C, Sun XC, Xia H et al (2018) Humidity-responsive actuation of programmable hydrogel microstructures based on 3D printing. Sens Act B: Chem 259:736–744.  https://doi.org/10.1016/j.snb.2017.12.053CrossRefGoogle Scholar
  68. 68.
    Kirillova A, Maxson R, Stoychev G et al (2017) 4D Biofabrication using shape-morphing hydrogels. Adv Mat 29(1703443).  https://doi.org/10.1002/adma.201703443CrossRefGoogle Scholar
  69. 69.
    Wang Y, Adokoh CK, Narain R (2018) Recent development and biomedical applications of self-healing hydrogels. Exp Opin Drug Deliv 15:77–91.  https://doi.org/10.1080/17425247.2017.1360865CrossRefGoogle Scholar
  70. 70.
    Aljohani W, Ullah MW, Li W et al (2018) Three-dimensional printing of alginate-gelatin-agar scaffolds using free-form motor assisted microsyringe extrusion system. J Polym Res 25(62).  https://doi.org/10.1007/s10965-018-1455-0
  71. 71.
    Azizi S, Mohamad R, Abdul Rahim R et al (2017) Hydrogel beads bio-nanocomposite based on Kappa-Carrageenan and green synthesized silver nanoparticles for biomedical applications. Int J Biol Macromol 104:423–431CrossRefGoogle Scholar
  72. 72.
    Tedesco MT, Di Lisa D, Massobrio P (2018) Soft chitosan microbeads scaffold for 3D functional neuronal networks. Biomaterials 156:159–171CrossRefGoogle Scholar
  73. 73.
    O’Connell MK, Murthy S, Phan S et al (2008) The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging. Matrix Biol J Int Soc Matrix Biol 27:171–181.  https://doi.org/10.1016/j.matbio.2007.10.008CrossRefGoogle Scholar
  74. 74.
    Su D et al (2018) Elastin: a near-infrared zwitterionic fluorescent probe for in vivo elastin imaging. Chem J (accepted)Google Scholar
  75. 75.
    Lessard J, Pelletier M, Biertho L et al (2015) Characterization of dedifferentiating human mature adipocytes from the visceral and subcutaneous fat compartments: fibroblast-activation protein alpha and dipeptidyl peptidase 4 as major components of matrix remodeling. PLoS ONE 10:e0122065.  https://doi.org/10.1371/journal.pone.0122065CrossRefGoogle Scholar
  76. 76.
    Louis F, Pannetier P, Souguir Z et al (2017) A biomimetic hydrogel functionalized with adipose ECM components as a microenvironment for the 3D culture of human and murine adipocytes. Biotechnol Bioeng 114:1813–1824.  https://doi.org/10.1002/bit.26306CrossRefGoogle Scholar
  77. 77.
    Toda S, Uchihashi K, Aoki S et al (2009) Adipose tissue-organotypic culture system as a promising model for studying adipose tissue biology and regeneration. Organogenesis 5:50–56CrossRefGoogle Scholar
  78. 78.
    Choi JS, Kim BS, Kim JY et al (2011) Decellularized extracellular matrix derived from human adipose tissue as a potential scaffold for allograft tissue engineering. J Biomed Mater Res A 97A:292–299.  https://doi.org/10.1002/jbm.a.33056CrossRefGoogle Scholar
  79. 79.
    Hayashi K, Okamoto F, Hoshi S et al (2017) Fast-forming hydrogel with ultralow polymeric content as an artificial vitreous body. Nat Biomed Eng 1:0044CrossRefGoogle Scholar
  80. 80.
    Liu CY, Matsusaki M, Akashi M (2016) Three-dimensional tissue models constructed by cells with nanometer- or micrometer-sized films on the surfaces. Chem Rec 16:783–796CrossRefGoogle Scholar
  81. 81.
    Alla SG, Sen M, El-Naggar AW (2012) Swelling and mechanical properties of superabsorbent hydrogels based on Tara gum/acrylic acid synthesized by gamma radiation. Carbohydr Polym 89(2):478–485CrossRefGoogle Scholar
  82. 82.
    Amin MCI, Ahmad N, Halib N et al (2012) Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym 88(2):465–473CrossRefGoogle Scholar
  83. 83.
    Zu Y, Zhang Y, Zhao X et al (2012) Preparation and characterization of chitosan polyvinyl alcohol blend hydrogels for the controlled release of nano-insulin. Int J Biol Macromol 50:82–87CrossRefGoogle Scholar
  84. 84.
    Coviello T, Grassi M, Rambone G et al (1999) Novel hydrogel system from scleroglucan: synthesis and characterization. J Control Release 60(2–3):367–378CrossRefGoogle Scholar
  85. 85.
    Kuijpers AJ, Van Wachem PB, Van Luyn MJ et al (2000) In vivo and in vitro release of lysozyme from cross-linked gelatin hydrogels: a model system for the delivery of antibacterial proteins from prosthetic heart valves. J Control Release 67:323–336CrossRefGoogle Scholar
  86. 86.
    Hubbell JA (1996) Hydrogel systems for barriers and local drug delivery in the control of wound healing. J Control Release 39:305–313CrossRefGoogle Scholar
  87. 87.
    Forster S, Antonietti M (1998) Amphiphilic block copolymers in structure-controlled nanomaterial hybrids. Adv Mater 10:195–217CrossRefGoogle Scholar
  88. 88.
    Taniguchi I, Akiyoshi K, Sunamoto J (1999) Self-aggregate nanoparticles of cholesteryl and galactoside groups-substituted pullulan and their specific binding to galactose specific lectin, RCA120. Macromol Chem Phys 200:1555–1560Google Scholar
  89. 89.
    Gacesa P (1988) Alginates. Carbohydr Polym 8:161–182CrossRefGoogle Scholar
  90. 90.
    Bezemer JM, Radersma R, Grijpma DW et al (2000) Zero-order release of lysozyme from (poly)ethylene glycol)/poly(butylene terephthalate) matrices. J Control Release 64(1–3):179–192CrossRefGoogle Scholar
  91. 91.
    Yang G, Xiao Z, Ren X, Long H et al (2016) Enzymatically crosslinked gelatin hydrogel promotes the proliferation of adipose tissue-derived stromal cells. PeerJ 4:e2497CrossRefGoogle Scholar
  92. 92.
    Silva DM, Nunes C, Pereira I et al (2014) Structural analysis of dextrins and characterization of dextrin-based biomedical hydrogels. Carbohydr Polym 114:458–466CrossRefGoogle Scholar
  93. 93.
    Park H, Woo EK, Lee KY (2014) Ionically cross-linkable hyaluronate-based hydrogels for injectable cell delivery. J Control Release: Off J Control Release Soc 196:146–153CrossRefGoogle Scholar
  94. 94.
    Alexandre N, Ribeiro J, Gärtner A et al (2014) Biocompatibility and hemocompatibility of polyvinyl alcohol hydrogel used for vascular grafting—in vitro and in vivo studies. J Biomed Mat Res 102:4262–4275Google Scholar
  95. 95.
    Yang D, Hartman MR, Derrien TL et al (2014) DNA materials: bridging nanotechnology and biotechnology. Acc Chem Res 47:1902–1911CrossRefGoogle Scholar
  96. 96.
    Gao Y, Wei Z, Li F et al (2014) Synthesis of a morphology controllable Fe3O4 nanoparticle/hydrogel magnetic nanocomposite inspired by magnetotactic bacteria and its application in H2O2 detection. Green Chem 16:1255–1261CrossRefGoogle Scholar
  97. 97.
    Li X, Fan DD, Deng JJ et al (2013) Synthesis and characterization of chitosan human like collagen/β-sodium glycerophosphate-carbodiimide hydrogel. Asian J Chem 25:9613–9616CrossRefGoogle Scholar
  98. 98.
    Zhang H, Shi R, Xie A et al (2013) Novel TiO2/PEGDA hybrid hydrogel prepared in situ on tumor cells for effective photodynamic therapy. ACS Appl Mater Interfaces 5:12317–12322CrossRefGoogle Scholar
  99. 99.
    Chicatun F, Muja N, Serpooshan V et al (2013) Effect of chitosan incorporation on the consolidation process of highly hydrated collagen hydrogel scaffolds. Soft Matter 9:10811–10821CrossRefGoogle Scholar
  100. 100.
    Abdel-Mohsen AM, Aly AS, Hrdina R et al (2011) Eco-synthesis of PVA/chitosan hydrogels for biomedical application. J Polym Env 19:1005–1012CrossRefGoogle Scholar
  101. 101.
    Saffer EM, Tew GN, Bhatia SR (2011) Poly(lactic acid)-poly(ethylene oxide) block copolymers: new directions in self-assembly and biomedical applications. Curr Med Chem 18:5676–5686CrossRefGoogle Scholar
  102. 102.
    Kosukegawa H, Mamada K, Kuroki K et al (2009) Evaluation of compliance of poly (vinyl alcohol) hydrogel for development of arterial biomodeling. In: Proceedings of the 13th international conference on biomedical engineering, IFMBE, pp 1993–1995Google Scholar
  103. 103.
    Meenach S, Anderson AA, Suthar M et al (2009) Biocompatibility analysis of magnetic hydrogel nanocomposites based on poly(N-isopropylacrylamide) and iron oxide. J Biomed Mar Res Part A 91A:903–909CrossRefGoogle Scholar
  104. 104.
    Zhao L, Mitomo H (2008) Adsorption of heavy metal ions from aqueous solution onto chitosan entrapped CM-cellulose hydrogels synthesized by irradiation. J Appl Polym Sci 110:1388–1395CrossRefGoogle Scholar
  105. 105.
    Becerra-bracamontes F, Sanchez-Diaz JC, Gonzalez-Alvarez A et al (2007) Design of a drug delivery system based on poly(acrylamide-co-acrylic acid)/chitosan nanostructured hydrogels. J Appl Polym Sci 106:3939–3944CrossRefGoogle Scholar
  106. 106.
    Park JS, Woo DG, Sun BK et al (2007) In vitro and in vivo test of PEG/PCL-based hydrogel scaffold for cell delivery application. J Control Release 124:51–59CrossRefGoogle Scholar
  107. 107.
    Jeong B, Gutowska A (2002) Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends Biotechnol 20:305–311CrossRefGoogle Scholar
  108. 108.
    Darsow U, Vieluf D, Ring J (1995) Atopy patch test with different vehicles and allergen concentrations: an approach to standardization. J Allergy Clin Immunol 95:677–684CrossRefGoogle Scholar
  109. 109.
    Corkhill PH, Hamilton CJ, Tighe BJ (1989) Synthetic hydrogels. VI. Hydrogel composites as wound dressings and implant materials. Biomaterials 10:3–10CrossRefGoogle Scholar
  110. 110.
    Fuciños C, Fuciños P, Miguez M et al (2014) Temperature- and pH-sensitive nanohydrogels of poly(N-Isopropylacrylamide) for food packaging applications: modelling the swelling-collapse behavior. PLoS ONE 9:e87190.  https://doi.org/10.1371/journal.pone.0087190CrossRefGoogle Scholar
  111. 111.
    Rhim JW, Wang LF (2013) Mechanical and water barrier properties of agar/κ-carrageenan/konjac glucomannan ternary blend biohydrogel films. Carbohydr Polym 96:71–81CrossRefGoogle Scholar
  112. 112.
    Fuciños C, Guerra NP, Teijon JM et al (2012) Use of poly(N-isopropylacrylamide) nanohydrogels for the controlled release of pimaricin in active packaging. J Food Sci 77:N21–28.  https://doi.org/10.1111/j.1750-3841.2012.02781.xCrossRefGoogle Scholar
  113. 113.
    Roy N, Saha N, Kitano T et al (2012) Biodegradation of PVP-CMC hydrogel film: a useful food packaging material. Carbohydr Polym 89:346–353CrossRefGoogle Scholar
  114. 114.
    Schneider KP, Gewessler U, Flock T et al (2012) Signal enhancement in polysaccharide-based sensors for infections by incorporation of chemically modified laccase. N Biotechnol 29:502–509CrossRefGoogle Scholar
  115. 115.
    Incoronato AL, Conte A, Buonocore GG et al (2011) Agar hydrogel with silver nanoparticles to prolong the shelf life of Fior di Latte cheese. J Dairy Sci 94:1697–1704CrossRefGoogle Scholar
  116. 116.
    Langmaier F, Mokrejs P, Kolomaznik K et al (2008) Biodegradable packing materials from hydrolysates of collagen waste proteins. Waste Manag 28:549–556CrossRefGoogle Scholar
  117. 117.
    Varma DM, Gold GT, Taub PJ et al (2014) Injectable carboxymethylcellulose hydrogels for soft tissue filler applications. Acta Biomater 10:4996–5004CrossRefGoogle Scholar
  118. 118.
    Kodavaty J, Deshpande AP (2014) Regimes of microstructural evolution as observed from rheology and surface morphology of crosslinked poly(vinyl alcohol) and hyaluronic acid blends during gelation. J Appl Polym Sci 131:1–10.  https://doi.org/10.1002/APP.41081CrossRefGoogle Scholar
  119. 119.
    Tichota DM, Silva AC, Sousa Lobo JM et al (2014) Design, characterization, and clinical evaluation of argan oil nanostructured lipid carriers to improve skin hydration. Int J Nanomed 9:3855–3864Google Scholar
  120. 120.
    Wang PC, Huang YL, Hou SS et al (2013a) Lauroyl/palmitoyl glycol chitosan gels enhance skin delivery of magnesium ascorbyl phosphate. J Cosmet Sci 64:273–286Google Scholar
  121. 121.
    Wang Y, Du R, Yu T (2013b) Systematical method for polyacrylamide and residual acrylamide detection in cosmetic surgery products and example application. Sci Justice 53:350–357CrossRefGoogle Scholar
  122. 122.
    Pavicic T (2013) Calcium hydroxylapatite filler: an overview of safety and tolerability. J Drugs Dermatol 12:996–1002Google Scholar
  123. 123.
    Lee E, Kim B (2011) Smart delivery system for cosmetic ingredients using pH-sensitive polymer hydrogel particles. Korean J Chem Eng 28:1347.  https://doi.org/10.1007/s11814-010-0509-8CrossRefGoogle Scholar
  124. 124.
    Raschip IE, Hitruc EG, Vasile C (2011) Semi-interpenetrating polymer networks containing polysaccharides. II. Xanthan/lignin networks: a spectral and thermal characterization. High Perf Polym 23:219–229.  https://doi.org/10.1177/0954008311399112CrossRefGoogle Scholar
  125. 125.
    Simi CK, Abraham TE (2010) Transparent xyloglucan–chitosan complex hydrogels for different applications. Food Hydrocoll 24:72–80CrossRefGoogle Scholar
  126. 126.
    Chandrika KSVP, Singh A, Sarkar DJ et al (2014) pH-sensitive crosslinked guar gum-based superabsorbent hydrogels: swelling response in simulated environments and water retention behavior in plant growth media. J Appl Polym Sci 131:1–12.  https://doi.org/10.1002/APP.41060CrossRefGoogle Scholar
  127. 127.
    Böhlenius H, Overgaard R (2014) Effects of direct application of fertilizers and hydrogel on the establishment of poplar cuttings. Forests 5:2967–2979CrossRefGoogle Scholar
  128. 128.
    Hotta M, Kennedy J, Higginbotham CL et al (2014) Synthesis and characterisation of novel ι-Carrageenan hydrogel blends for agricultural seed coating application. Appl Mech Mat 679:81–91CrossRefGoogle Scholar
  129. 129.
    Tang H, Zhang L, Hu L et al (2014) Application of chitin hydrogels for seed germination, seedling growth of rapeseed. J Plant Growth Regul 33:195–201CrossRefGoogle Scholar
  130. 130.
    Bortolin A, Aouada FA, Mattoso LH et al (2013) Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. J Agric Food Chem 61:7431–7439CrossRefGoogle Scholar
  131. 131.
    Shahid SA, Qidwai AA, Anwar F et al (2012) Improvement in the water retention characteristics of sandy loam soil using a newly synthesized poly(acrylamide-co-acrylic acid)/AlZnFe2O4 superabsorbent hydrogel nanocomposite material. Molecules 17:9397–9412CrossRefGoogle Scholar
  132. 132.
    Guilherme MR, Reis AV, Paulino AT et al (2010) Pectin-based polymer hydrogel as a carrier for release of agricultural nutrients and removal of heavy metals from wastewater. J Appl Polym Sci 117:3146–3154Google Scholar
  133. 133.
    Bao JM, Wang YZ, Li YX (2014a) Preparation of crosslinked dextran hydrogel microspheres by inverse suspension polymerization and its application in separation of liposome and drug. Xiandai Huagong/Modern Chem Indus 34:55–58, 60. ISSN: 02534320Google Scholar
  134. 134.
    Bao S, Wu D, Wang Q et al (2014b) Functional elastic hydrogel as recyclable membrane for the adsorption and degradation of methylene blue. PLoS One 9(2):e88802.  https://doi.org/10.1371/journal.pone.0088802CrossRefGoogle Scholar
  135. 135.
    Cao Y, Lui N, Fu C et al (2014) Thermo and pH dual-responsive materials for controllable oil/water separation. ACS Appl Mater Interfaces 6:2026–2030CrossRefGoogle Scholar
  136. 136.
    Tongwa P, Bai B (2014) Degradable nanocomposite preformed particle gel for chemical enhanced oil recovery applications. J Petrol Sci Eng 124:35–45CrossRefGoogle Scholar
  137. 137.
    Zolfaghari R, Katlab AA, Nabavizadeh J et al (2006) Preparation and characterization of nanocomposite hydrogels based on polyacrylamide for enhanced oil recovery applications. J Appl Polym Sci 100:2096–2103CrossRefGoogle Scholar
  138. 138.
    Aalaie J, Vasheghani-Farahani E, Semsarzadeh MA et al (2008) Gelation and swelling behavior of semi-interpenetrating polymer network hydrogels based on polyacrylamide and poly(vinyl alcohol). J Macromol Sci Part B 47:1017–1027CrossRefGoogle Scholar
  139. 139.
    Lei ZX, Chen YM, Chen YW et al (2006) Preliminary results of pilot test on indepth permeability profile control/emulsion flood by using PAM inverse emulsion. Oilfield Chem 23:81–84Google Scholar
  140. 140.
    Wang XM, Zhang DS (2003) A preliminary study on xanthan/zirconium flowable gel as flooding fluid. Oildfield Chem 20:157–159Google Scholar
  141. 141.
    Tiena HT, Ottovaab AL (1998) Supported planar lipid bilayers (s-BLMs) as electrochemical biosensors. Electrochim Acta 43:3587–3610CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Cédric Delattre
    • 1
  • Fiona Louis
    • 2
  • Mitsuru Akashi
    • 3
  • Michiya Matsusaki
    • 2
    • 4
    • 5
  • Philippe Michaud
    • 1
  • Guillaume Pierre
    • 1
    Email author
  1. 1.Institut PascalUniversité Clermont Auvergne, CNRS, SIGMA ClermontClermont-FerrandFrance
  2. 2.Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of EngineeringOsaka UniversitySuitaJapan
  3. 3.Department of Frontier Biosciences, Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
  4. 4.Department of Applied Chemistry, Graduate School of EngineeringOsaka UniversitySuitaJapan
  5. 5.JST-PRESTOKawaguchiJapan

Personalised recommendations