Impact of Nanoparticle Shape, Size, and Properties of the Sustainable Nanocomposites

  • Thandapani GomathiEmail author
  • K. Rajeshwari
  • V. Kanchana
  • P. N. Sudha
  • K. Parthasarathy


An impact of nanoparticles physicochemical properties in various applications involves a good understanding between the nanoparticles and a systems physicochemical interactions of specific applications, especially in environmental and biological systems. This chapter is aimed to correlate the properties of nanomaterials such as size, shape, surface morphology and toxicity with its various applications using basic studies to offer a platform for engineering the next generation materials. Also, this chapter will provide the foundation for the study of nanocomposites, its current progress and a perspective on the findings.


Nanocomposites Biophysical properties Biomaterials 


  1. 1.
    Abdullahassan MA, Souabi S, Yaacoubi A, Baudu M (2006) Removal of surfactant from industrial wastewaters by coagulation flocculation process. Int J Environ Sci Technol 3(4):327–332CrossRefGoogle Scholar
  2. 2.
    Adeosun SO, Lawal GI, Balogun Sambo A, Akpan Emmanuel I (2012) Review of green polymer nanocomposites. J Miner Mater Charact Eng 11(4):483–514Google Scholar
  3. 3.
    Ajayan PM, Schadler LS, Braun PV (2006) Nanocomposite science and technology, Wiley, New York, NY, USAGoogle Scholar
  4. 4.
    Amass W, Amass A, Tighe BA (1998) Review of biodegradable polymers: Uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym Int 47:89–144CrossRefGoogle Scholar
  5. 5.
    Amuda OS, Amoo IA, Ajayi OO (2006) Performance optimization of coagulation/flocculation process in the treatment of beverage industrial wastewater. J Hazard Mater 129:69–72CrossRefGoogle Scholar
  6. 6.
    An J, Zhang X, Guo Q, Zhao Y, Wu Z, Li C (2015) Glycopolymer modified magnetic mesoporous silica nanoparticles for MR imaging and targeted drug delivery. Colloids and Surfaces A. Physicochemical Eng Aspects 482:98–108CrossRefGoogle Scholar
  7. 7.
    Anwunobi AP, Emeje MO (2011) Recent application of natural polymers in nanodrug delievery. J Nanomedic Nanotechnol. S 4:002Google Scholar
  8. 8.
    Araujo L, Lobenberg R et al (1999) Influence of the surfactant concentration on the body distribution of nanoparticles. J Drug Target 6:373–385CrossRefGoogle Scholar
  9. 9.
    Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM (2010) Biodegradable polymer matrix nanocomposites for tissue engineering : a review. Polym Degrad Stab 95:2126–2146. Scholar
  10. 10.
    Arnida, Malugin A, Ghandehari H (2010) Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J Appl Toxicol 30(3):212–217Google Scholar
  11. 11.
    Ashori A (2008) Wood-plastic composites as promising green-composites for automotive industries. Bioresour Biotechnol 99:4661–4667CrossRefGoogle Scholar
  12. 12.
    Bai J, Zhong X, Jiang S, Huang Y, Duan X, (2010) Graphene nanomesh nature nanotechnology (5)3:190–194Google Scholar
  13. 13.
    Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science, 314(5802), 1107–1110 CrossRefGoogle Scholar
  14. 14.
    Barakat MA, Al-Hutailah RI, Hashim MH, Qayyum E, Kuhn JN (2013) Titania supported silver-based bimetallic nanoparticles as photocatalysts. Environ Sci Pollut Res 20(6):3751–3759CrossRefGoogle Scholar
  15. 15.
    Barakat MA, Ramadan MH, Alghamdi MA, Al-Garny SS, Woodcock HL, Kuhn JN (2013) Remediation of Cu (II), Ni (II), and Cr (III) ions from simulated wastewater by dendrimer/ titania composites. J Environ Manage 117:50–57CrossRefGoogle Scholar
  16. 16.
    Bashi AM, Haddawi SM, Dawood AH (2011) Synthesis and characterizations of two herbicides with Zn/Al layered double hydroxide nanohybrides. J Kerbala Univ 9(1):9–16Google Scholar
  17. 17.
    Bednarcyk BA (2003) Compos B 34:175–197CrossRefGoogle Scholar
  18. 18.
    Begum N, Sharma B, Pandey RS (2010) Evaluation of insecticidal efficacy of calotropis procera and annona squamosa ethanol extracts against musca domestica. J Biofertil Biopestici 1:101Google Scholar
  19. 19.
    Buchman JT, Miranda J, Gallagher, Chi-Ta Yang, Xi Zhang, Miriam O P, Krausee Rigoberto, Hernandez, Galya Orr, (2016) Research highlights: examining the effect of shape on nanoparticle interactions with organisms. Environ Sci Nano Scholar
  20. 20.
    Cao K, Jiang Z, Zhao J, Zhao C, Gao C, Pan F, Wang B, Cao X, Yang J (2014) Enhanced water permeation through sodium alginate membranes by incorporating graphene oxides. J Membr Sci 469:272–283CrossRefGoogle Scholar
  21. 21.
    Castangia I, Nácher A, Caddeo C, Valenti D, Fadda AM, Díez-Sales O, Ruiz-Saurí A, Manconi M (2014) Fabrication of quercetin and curcumin bionanovesicles for the prevention and rapid regeneration of full-thickness skin defects on mice. Acta Biomater 10(3):1292–1300CrossRefGoogle Scholar
  22. 22.
    Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23:1273–1335CrossRefGoogle Scholar
  23. 23.
    Chandra V, Park J, Chun Y, Lee JW, Hwang IC, Kim KS (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4:3979–3986CrossRefGoogle Scholar
  24. 24.
    Chen L, Bromberg L, Hatton TA, Rutledge GC (2007) Catalytic hydrolysis of p-nitrophenyl acetate by electrospun polyacrylamidoxime nanofibers. Polymer 48(16):4675–4682CrossRefGoogle Scholar
  25. 25.
    Chen Z, Mao R et al (2012) Fullerenes for cancer diagnosis and therapy: preparation, biological and clinical perspectives. Curr Drug Metab 13(8):1035–1045CrossRefGoogle Scholar
  26. 26.
    Chen GC, Shan XQ, Wang YS, Wen B, Pei ZG, Xie YN, Liu T, Pignatello JJ (2009) Adsorption of 2,4,6-trichlorophenol by multiwalled carbon nanotubes as affected by Cu(II). Water Res 43(9):2409–2418CrossRefGoogle Scholar
  27. 27.
    Chen CZ, Zhou ZW (2004) The preparation of nano-ZnO and its middle infrared-ultraviolet-visible light absorption properties. J Funct Mater 35:97–98Google Scholar
  28. 28.
    Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem. Rev 107:2891–2959CrossRefGoogle Scholar
  29. 29.
    Cheung RC, Ng TB, Wong JH, Chan WY (2015) Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs 13:5156–5186CrossRefGoogle Scholar
  30. 30.
    Chithrani BD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–8CrossRefGoogle Scholar
  31. 31.
    Cioffi N, Torsi L, Ditaranto N et al (2004) Antifungal activity of polymer- based copper nanocomposite coatings. Appl Phys Lett 85(12):2417–2419CrossRefGoogle Scholar
  32. 32.
    Crandall BC (ed) (1996) Nanotechnology MIT Press, CambridgeGoogle Scholar
  33. 33.
    Dash MP, Tripathy M, Sasmal A, Mohanty GC, Nayak P (2010) Poly(anthranilic acid)/multi-walled carbon nanotube composites: spectral, morphological, and electrical properties. J Mater Sci 45(14) 3858–3865CrossRefGoogle Scholar
  34. 34.
    Deborah DL, Chung (2002) Composite materials, functional materials for modern technologies, Springer-Verlag London Ltd, UKGoogle Scholar
  35. 35.
    Deepachitra R, Nigam R, Prohit SD, et al (2014) In vitro study of hydroxyapatite coatings on fibrin functionalized/pristine graphene oxide for bone grafting. Mater Manuf Process 30(6):804–811CrossRefGoogle Scholar
  36. 36.
    Dobkowski J, Kołos R, Kamiński J, Kowalczyńska HM (1999) Cell adhesion to polymeric surfaces: experimental study and simple theoretical approach. J Biomed Mater Res 47:234–242CrossRefGoogle Scholar
  37. 37.
    Drzal LT (2010) Sustainable biodegradable green nanocomposites from bacterial bioplastic for automotive applications. http// (accessed on 20 August 2010)
  38. 38.
    Fan J, Shi Z, Lian M, Li H, Yin J (2013) Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity. J Mater Chem A 1. 51:7433–7443CrossRefGoogle Scholar
  39. 39.
    Fang J, Fan H, Ma Y, Wang Z, Chang Q (2015) Surface defects control for ZnO nanorods synthesized by quenching and their anti-recombination in photocatalysis. Appl Surface Sci 332:47–54CrossRefGoogle Scholar
  40. 40.
    Feldherr CM, Lanford RE, Akin D (1992) Signal-mediated nuclear transport in simian virus 40–transformed cells is regulated by large tumor antigen. Proc Natl Acad Sci USA 15:11002–11005CrossRefGoogle Scholar
  41. 41.
    Floody MC, Theng B, Reyes P, Mora M (2009) Natural nanoclays: applications and future trends–a Chilean perspective. Clay Miner 44:161–176CrossRefGoogle Scholar
  42. 42.
    Fong J, Wood F (2006) Nanocrystalline silver dressings in wound management: a review. Int J Nanomed 1(4):441–449CrossRefGoogle Scholar
  43. 43.
    Fonseca-Santos B, Chorilli M (2017) An overview of carboxymethyl derivatives of chitosan: Their use as biomaterials and drug delivery systems. Mater Sci Eng C Mater Biol Appl 77:1349–1362CrossRefGoogle Scholar
  44. 44.
    Freeman RG, Grabar KC, Allison KJ, Bright RM, Davis JA, Guthrie AP, Hommer MB, Jackson MA, Smith PC, Walter DG, Natan MJ (1995). SERS Substrates. Science 267Google Scholar
  45. 45.
    Gangopadhyay R, De A (2000) Conducting polymer nanocomposites: a brief overview 608–622CrossRefGoogle Scholar
  46. 46.
    Gao C, Zhang W, Li H, Lang L, Xu Z (2008) Controllable fabrication of mesoporous MgO with various morphologies and their absorption performance for toxic pollutants in water. Cryst Growth Des 8:3785–3790CrossRefGoogle Scholar
  47. 47.
    Geng B, Jin Z, Li T, Qi X (2009) Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles. Chemosphere 75(6):825–830CrossRefGoogle Scholar
  48. 48.
    Giannees BEP (1996). Polymer layered silicate nanocomposites. 29–35Google Scholar
  49. 49.
    Giannelis EP (1996) Adv Mater 8:29CrossRefGoogle Scholar
  50. 50.
    Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48:1CrossRefGoogle Scholar
  51. 51.
    Graham K, Schreuder-gibson H, Gogins M (2003) Incorporation of electrospun nanofibers into functional structures. Tech Assos Pulp Pap Ind 1–16Google Scholar
  52. 52.
    Grant SA, Spradling CS, Grant DN (2014) Assessment of the biocompatibility and stability of a gold nanoparticle collagen bioscaffold. J Biomed Mater Res, Part A 102:332–339CrossRefGoogle Scholar
  53. 53.
    Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ et al (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA 105:11613–11618CrossRefGoogle Scholar
  54. 54.
    Guo Y, Bao C, Song L, Yuan B, Hu Y (2011) In situ polymerization of graphene, graphite oxide, and functionalized graphite oxide into epoxy resin and comparison study of on-theflame behavior. Ind Eng Chem Res 50:7772–7783CrossRefGoogle Scholar
  55. 55.
    Gupta VK, Agarwal S, Saleh TA (2011) Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J Hazard Mater 185:17–23CrossRefGoogle Scholar
  56. 56.
    Gupta VK, Tyagi I, Sadegh H, Shahryari-Ghoshekand R, Makhlouf ASH, Maazinejad B (2015) Nanoparticles as adsorbent; a positive approach for removal of noxious metal ions: a review. Sci Technol Dev 34:195CrossRefGoogle Scholar
  57. 57.
    He P, Sahoo S, Ng KS, Chen K, Toh SL, Goh JC (2013) Enhanced osteoinductivity and osteoconductivity through hydroxyapatite coating of silk-based tissue-engineered ligament scaffold. J Biomed Mater Res A 101:555–566CrossRefGoogle Scholar
  58. 58.
    Heydarnejad MS, Rahnama S, Mobini-Dehkordi M, Yarmohammadi P, Aslnai H (2014) Sliver nanoparticles accelerate skin wound healing in mice (Musmusculus) through suppression of innate immune system. Nanomed J 1(2):79–87Google Scholar
  59. 59.
    Huang Z, Zhang Y, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253. Scholar
  60. 60.
    Huang ZN, Wang XL, Yang DS (2015) Adsorption of Cr(VI) in wastewater using magnetic multi-wall carbon nanotubes. Water Sci Eng 8(3):226–232CrossRefGoogle Scholar
  61. 61.
    Huang J, Bu L, Xie J, Chen K, Cheng Z, Li X, Chen X (2010) Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles. ACS Nano 4(12):7151–60CrossRefGoogle Scholar
  62. 62.
    Ihsanullah Al-Khaldi FA, Abusharkh B, Khaled M, Atieh MA, Nasser MS, Saleh TA, Agarwal S, Tyagi I, Gupta VK (2015) Adsorptive removal of cadmium (II) ions from liquid phase using acid modified carbon-based adsorbents. J Molecul Liq 204:255–263CrossRefGoogle Scholar
  63. 63.
    Jamshidian M, Tehrany EA, Imran M et al (2010) Poly-lactic acid: Production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9:552–571CrossRefGoogle Scholar
  64. 64.
    Jiang H, Lau M, Tellkamp VL, Lavernia EJ (2000) Synthesis of nanostructured coatings by high velocity oxygen-fuel thermal spraying. In: Nalwa HS (ed) Handbook of nanostructured materials and nanotechnology, Academic Press, San Diego, CA, USACrossRefGoogle Scholar
  65. 65.
    Jin R, Lin B, Li D, Ai H (2014) Super paramagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Curr Opin Pharmacol 18:18–27CrossRefGoogle Scholar
  66. 66.
    John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohyd Polym 71:343–364CrossRefGoogle Scholar
  67. 67.
    Jolanta P, Marcin B, Zygmunt K (2011) Nanosilver—making difficult decisions. Ecol Chem Eng 18(2)Google Scholar
  68. 68.
    Jolivet JP, Henry M, Livage J (2000) Metal oxide chemistry and synthesis: from solution to solid state. Wiley, New YorkGoogle Scholar
  69. 69.
    Kaminskas LM, Boyd BJ et al (2011) Dendrimer pharmacokinetics: the effect of size, structure and surface characteristics on ADME properties. Nanomedicine 6(6):1063–1084CrossRefGoogle Scholar
  70. 70.
    Katepalli H, Bikshapathi M, Sharma CS, Verma N, Sharma A (2011) Synthesis of hierarchical fabrics by electrospinning of PAN nanofibers on activated carbon microfibers for environmental remediation applications. Chem Eng J 171(3):1194–1200CrossRefGoogle Scholar
  71. 71.
    Keledi G, Hari J, Pukanszky B (2012) Polymer nanocomposites: structure, interaction, and functionality. Nanoscale 4:1919CrossRefGoogle Scholar
  72. 72.
    Khan WS, Ceylan M, Asmatulu R (2012) Effects of nanotechnology on global warming. In: ASEE midwest section conference, Rollo, MO, 19–21, Sep 2012, p 13Google Scholar
  73. 73.
    Khatamiana M, Divband B, Daryana M (2016) Preparation, characterization and antimicrobial property of Ag+- nano Chitosan/ZSM-5: novel Hybrid Biocomposites. Nanomed J 3(4):268–279Google Scholar
  74. 74.
    Kijeńska E, Prabhakaran MP, Swieszkowski W, Kurzydlowski KJ, Ramakrishna S (2012) Electrospun bio-composite P (LLACL)/ collagen I/collagen III scaffolds for nerve tissue engineering. J Biomed Mater Res B Appl Biomater 100(4):1093–1102CrossRefGoogle Scholar
  75. 75.
    Kinnear C, Moore Thomas L, Rodriguez-Lorenzo L, Rothen-Rutishauser B, Petri-Fink A (2017) Form follows function. Nanoparticle shape and its implications for nanomedicine. Chem Rev 117:11476–11521CrossRefGoogle Scholar
  76. 76.
    Kohane DS (2007) Microparticles and nanoparticles for drug delivery. Biotechnol Bioeng 96(2):203–209CrossRefGoogle Scholar
  77. 77.
    Kokabi M, Sirousazar M, Hassan ZM (2007) PVA–clay nanocomposite hydrogels for wound dressing. Eur Polym J 43:773–781CrossRefGoogle Scholar
  78. 78.
    Kudumula KK (2016) Scope of polymer nano-composite in bio-medical applications. IOSR-JMCE 13(5):18–21CrossRefGoogle Scholar
  79. 79.
    Kumar A, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021. Scholar
  80. 80.
    Kumar SK, Krishnamoorti R (2010) Annu Rev Chem Biomol Eng 1:37CrossRefGoogle Scholar
  81. 81.
    Kyzas GZ, Bikiaris DN, Seredych M, Bandosz TJ, Deliyanni EA (2014) Removal of dorzolamide from biomedical wastewaters with adsorption onto graphite oxide/ poly (acrylic acid) grafted chitosan nanocomposite. Bioresour Technol 152:399–406CrossRefGoogle Scholar
  82. 82.
    Langer R, Vacanti J (1993) Tissue engineering science (80) 260:920–6CrossRefGoogle Scholar
  83. 83.
    Leceta I, Guerrero P, Ibarburu I, Duenas MT, de la Caba K (2013) Characterization and antimicrobial analysis of chitosan based films. J Food Engineering 116(4):889– 899CrossRefGoogle Scholar
  84. 84.
    Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126CrossRefGoogle Scholar
  85. 85.
    Leja K, Lewandowicz G (2010) Polymer biodegradation and biodegradable polymers—a review. Polish J Environ Stud 19:255–266Google Scholar
  86. 86.
    Leu JG, Chen SA, Chen HM, Wu WM, Hung CF, Yao YD, Tu CS, Liang YJ (2012) The effects of gold nanoparticles in wound healing with antioxidant epigallocatechin gallate and α-lipoic acid. Nanomedicine. 8(5):767–775CrossRefGoogle Scholar
  87. 87.
    Li et al (2015) Nanoscale 7:16631–16646. Scholar
  88. 88.
    Litzinger DC et al (1994) Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly (ethylene glycol)-containing liposomes. Biochim Biophys Acta 1190(1):99–107CrossRefGoogle Scholar
  89. 89.
    Liu D, Zhu Y, Li Z, Tian D, Chen L, Chen P (2013) Chitin nanofibrils for rapid and efficient removal of metal ions from water system. Carbohydr Polym 98:483–489CrossRefGoogle Scholar
  90. 90.
    Long RQ, Yang RT (2001) Carbon nanotubes as superior sorbent for dioxin removal. J Am Chem Soc 123(9):2058–2059CrossRefGoogle Scholar
  91. 91.
    Lu F, Wu SH, Hung Y, Mou CY (2009) Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small Jun 5(12):1408–1413CrossRefGoogle Scholar
  92. 92.
    Luo T, Cui J, Hu S, Huang Y, Jing C (2010) Arsenic removal and recovery from copper smelting wastewater using TiO2. Environ Sci Technol 44(23):9094–9098CrossRefGoogle Scholar
  93. 93.
    Ma Z, Lim LY (2003) Uptake of chitosan and associated insulin in Caco-2 cell monolayers: a comparison between chitosan molecules and chitosan nanoparticles. Pharm Res 20(11):1812–1819CrossRefGoogle Scholar
  94. 94.
    Mago G, Jana SC, Ray SS, Mcnally T, Mcnally T (2012) Polymer nanocomposite processing, characterization, and applications. Scholar
  95. 95.
    Mago G, Ray SS, Shofner ML, Wang S, Zhang J (2013) Polymer nanocomposite processing, characterization, and applications. J Nanomater Scholar
  96. 96.
    Malafaya PB, Silva GA, Reis RL (2007) Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59:207–233CrossRefGoogle Scholar
  97. 97.
    Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51CrossRefGoogle Scholar
  98. 98.
    Mangaiyarkarasi R, Chinnathambi S, Karthikeyan S, Aruna P, Gane- san S (2016) Paclitaxel conjugated Fe3O4.LaF3:Ce3+,Tb3+ nanoparticles as bifunctional targeting carriers for Cancer theranostics application. J Magn Magn Mater 399:207–215Google Scholar
  99. 99.
    Matthews FL, Rawlings RD (1999) Composite materials: engineering and science: Elsevier, Amsterdam, The NetherlandCrossRefGoogle Scholar
  100. 100.
    Mayer LD et al (1989) Influence of vesicle size, lipid composition, and drug-to-lipid ratio on the biological activity of liposomal doxorubicin in mice. Cancer Res 49(21):5922–5930Google Scholar
  101. 101.
    Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macrmol Mater Eng 276(277):1–24Google Scholar
  102. 102.
    Murphy PS, Evans GRD (2012) Advances in wound healing: a review of current wound healing products. Plast Sur Int 190436:1–8Google Scholar
  103. 103.
    Murugesan S, Mousa SA et al (2007) Carbon inhibits vascular endothelial growth factor- and fibroblast growth factor-promoted angiogenesis. FEBS Lett 581:1157–1160CrossRefGoogle Scholar
  104. 104.
    Nagayasu A, Uchiyama K, Kiwada H (1999) The size of liposomes: a factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. Adv Drug Deliv Rev 40(1–2):75–87CrossRefGoogle Scholar
  105. 105.
    Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y et al (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163CrossRefGoogle Scholar
  106. 106.
    Nanjwade BK, Derkar GK, Bechra HM, Nanjwade VK, Manvi FV (2011) Design and characterization of nanocrystals of lovastatin for solubility and dissolution enhancement. J Nanomedic Nanotechnol 2:107CrossRefGoogle Scholar
  107. 107.
    Okamoto M, John B (2013) Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog Polym Sci 38:1487–1503CrossRefGoogle Scholar
  108. 108.
    Ovissipour M, Roopesh SM, Rasco BA, Sablani SS (2014) Engineered nanoparticles (ENPs): applications, risk assessment, and risk management in the agriculture and food sectors, In: Wang S (ed) Food chemical hazard detection: development and application of new technologies Wiley, Chichester, UK. Scholar
  109. 109.
    Pandey JK, Chu WS, Lee CS et al (2007) Preparation characterization and performance evaluation of nanocomposites from natural fiber reinforced biodegradable polymer matrix for automotive applications. Presented at the international symposium on polymers and the environment: emerging technology and science, bioenvironmental polymer society (BEPS), Vancouver, WA, USA, 17–20 October 2007Google Scholar
  110. 110.
    Panupakorn P, Chaichana E, Praserthdam P, Jongsomjit B (2013) Polyethylene/clay nanocomposites produced by in situ polymerization with zirconocene/MAO catalyst. J Nanomater Scholar
  111. 111.
    Park KE, Jung SY, Lee SJ, Min BM, Park WH (2006) Biomimetic nanofibrous scaffolds: preparation and characterization of chitin/silk fibroin blend nanofibers. Int J Biol Macromol 38:165–173CrossRefGoogle Scholar
  112. 112.
    Paul DR, Robeson LM (2008) Polymer 49:3187CrossRefGoogle Scholar
  113. 113.
    Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339(15):2693–2700CrossRefGoogle Scholar
  114. 114.
    Qiu Y, Liu Y, Wang LM, Xu LG, Bai R et al (2010) Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 31:7606–7619CrossRefGoogle Scholar
  115. 115.
    Rastogi V, Yadav P et al (2014) Carbon nanotubes: an emerging drug carrier for targeting cancer cells. J Drug Deliv 670815Google Scholar
  116. 116.
    Raveendran P, Fu J, Wallen SL (2003) Completely green synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125:13940–13941. Scholar
  117. 117.
    Ravichandran R, Sundarrajan S, Venugopal JR, Mukherjee S, Ramakrishna S (2012) Advances in polymeric systems for tissue engineering and biomedical applications. Macromol Biosci 12:286–311. Scholar
  118. 118.
    Ray SS (2013) Environmentally friendly polymer nanocomposites, types, processing and properties. Woodhead Publishing Series in Composites Science and Engineering. 44, Woodhead Publishing LtdGoogle Scholar
  119. 119.
    Reddy RJ (2010) Preparation, characterization and properties of injection molded graphene nanocomposites, Master’s thesis, Mechanical Engineering, Wichita State University, Wichita, Kansas, USAGoogle Scholar
  120. 120.
    Reneker DH, Fong H (2006) Polymeric nanofiber. American Chemical Society Publishers, Washington. 1–6Google Scholar
  121. 121.
    Rhim J, Park HM, Ha CS (2013) Bionanocomposites for food packaging application. Prog Polym Sci 38:1629–1652CrossRefGoogle Scholar
  122. 122.
    Roco MC, Williams S, Alivisatos P (eds) (2000) nanotechnology research directions: IWGN workshop report vision for nanotechnology in the next decade, Kluwer Academic Publishers, DordrechtGoogle Scholar
  123. 123.
    Roy R, Roy R, Roy D (1986) Alternative perspectives on “quasi-crystallinity”, non-uniformity and nanocomposites. Mater Lett 4:323–328CrossRefGoogle Scholar
  124. 124.
    Sanginario A, Miccoli B et al (2017) Carbon nanotubes as an effective opportunity for cancer diagnosis and treatment. Biosensors 7(1):9CrossRefGoogle Scholar
  125. 125.
    Savva I, Krekos G, Taculescu A, Marinica O, Vekas L, Krasia-christoforou T (2012) Fabrication and characterization of magnetoresponsive electrospun nanocomposite membranes based on methacrylic random copolymers and magnetite nanoparticles. J Nanomater 9. Scholar
  126. 126.
    Shahidi S, Ghoranneviss M (2014) Effect of plasma pretreatment followed by nanoclay loading on flame retardant properties of cotton fabric. J. Fusion Energ 33:88CrossRefGoogle Scholar
  127. 127.
    Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271CrossRefGoogle Scholar
  128. 128.
    Sinha SR, Bousmina M, MaiY YuZ (2006) Eds Biodegradable polymer/layered silicate nanocomposites. Polymer nanocomposites. Woodhead Publishing and Maney Publishing, Cambridge, England, pp 57–129CrossRefGoogle Scholar
  129. 129.
    Siracusa V, Rocculi P, Romani S et al (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643CrossRefGoogle Scholar
  130. 130.
    Stamatialis DF, Papenburg BJ, Giron M, Bettahalli SM, Schmitmeier S, Wessling M (2008) Medical applications of membranes. Drug Delivery Artif Organs Tissue Eng 308:1–34. Scholar
  131. 131.
    Stander L, Theodore L (2011) Environmental implications of nanotechnology—an update. Int J Environ Res Public Health 8:470–479CrossRefGoogle Scholar
  132. 132.
    Starr FW, Glotzer SC, Dutcher JR, Marangoni AG (eds) (2004) Soft materials, structure and dynamics, Marcel Dekker, New YorkGoogle Scholar
  133. 133.
    Sultana N, Mokhtar M, Hassan MI, Jin RM, Roozbahani F, Khan TH (2015) Chitosan-based nanocomposite scaffolds for tissue engineering applications. Mater Manuf Process 30:273–278CrossRefGoogle Scholar
  134. 134.
    Suryanarayana C (1994) Structure and properties of nanocrystalline materials. Bull Mater Sci 17:307CrossRefGoogle Scholar
  135. 135.
    TPA Plast global engineering nanocomposite polymers. (accessed on 20 August 2010)
  136. 136.
    Tabiei A, Aminjikarai SB (2009) Compos Struct 88:65–82CrossRefGoogle Scholar
  137. 137.
    Tanaka (2004) Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies material characterization and future applications, IEEE Trans Dielectr Electr Insul 11:5CrossRefGoogle Scholar
  138. 138.
    Tang X, Zhang Q, Liu Z, Pan K, Dong Y, Li Y (2014) Removal of Cu (II) by loofah fibers as a natural and low-cost adsorbent from aqueous solutions. J Mol Liq 199:401–407CrossRefGoogle Scholar
  139. 139.
    Tarigh GD, Shemirani F (2013) Magnetic multi-wall carbon nanotube nanocomposite as an adsorbent for preconcentration and determination of lead (II) and manganese (II) in various matrices. Talanta 115:744–750CrossRefGoogle Scholar
  140. 140.
    Thomas S, Waterman P, Chen S, Marinelli B, Seaman M et al (2011) Development of secreted protein and acidic and rich in cysteine (SPARC) targeted nanoparticles for the prognostic molecular imaging of metastatic prostate cancer. J Nanomedic Nanotechnol 2:112CrossRefGoogle Scholar
  141. 141.
    Thostenson ET, Li C, Chou TW (2005) Nanocomposites in context. Compos Sci Technol 65:491–516CrossRefGoogle Scholar
  142. 142.
    Toy R et al (2013) Multimodal in vivo imaging exposes the voyage of nanoparticles in tumor microcirculation. ACS Nano 7(4):3118–3129CrossRefGoogle Scholar
  143. 143.
    Tripathi A, Saravanan S, Pattnaik S, Moorthi A, Partridge NC, Selvamurugan N (2012) Bio-composite scaffolds containing chitosan/nano-hydroxyapatite/nano-copper-zinc for bone tissue engineering. Int J Biol Macromol 50:294–299CrossRefGoogle Scholar
  144. 144.
    Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96 1533–1554. Scholar
  145. 145.
    Vaia RA, Giannelis EP (2001) MRS Bull 26:394CrossRefGoogle Scholar
  146. 146.
    Vaia RA, Giannelis EP (eds) (2001) Polymer nanocomposites. American Chemical Society, WashingtonGoogle Scholar
  147. 147.
    Varela JA, Bexiga MG, Åberg C, Simpson JC, Dawson KA (2012) Quantifying size-dependent interactions between fluorescently labeled polystyrene nanoparticles and mammalian cells. J Nanobiotechnol 10(1):39CrossRefGoogle Scholar
  148. 148.
    Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62(3):284–304CrossRefGoogle Scholar
  149. 149.
    Venkatesan J, Kim SK (2014) Nano-hydroxyapatite composite biomaterials for bone tissue engineering—a review. J Biomed Nanotechnol 10:3124–3140CrossRefGoogle Scholar
  150. 150.
    Vllasaliu et al (2014) Expert Opin. Drug Delivery 11:139–154. Scholar
  151. 151.
    Wan Y, Chen X, Xiong G, Guo R, Luo H (2014) Synthesis and characterization of three-dimensional porous graphene oxide/sodium alginate scaffolds with enhanced mechanical properties. Mater Express 4:429–434CrossRefGoogle Scholar
  152. 152.
    Wang J, Byrne JD, Napier ME, De Simone JM (2011) More effective nanomedicines through particle design. Small 7:1919–1931CrossRefGoogle Scholar
  153. 153.
    Wang X, Wenk E, Matsumoto A, Meinel L, Li C, Kaplan DL (2007) Silk microspheres for encapsulation and controlled release. J Control Release 117:360–370CrossRefGoogle Scholar
  154. 154.
    Wang HQ, Yang GF, Li QY, Zhong XX, Wang FP, LiZ S, Li YH (2011) Porous nano-MnO2 Large scale synthesis via a facile quick-redox procedure and application in a supercapacitor. New J Chem 35:469–475CrossRefGoogle Scholar
  155. 155.
    Wang R, Yang J, Zheng Z, Carducci MD, Jiao J, Seraphin S, (2001) Dendron-Controlled Nucleation and Growth of Gold Nanoparticles. Angew Chem Int Edi 40(3) 549–552CrossRefGoogle Scholar
  156. 156.
    Wang SH, Lee CW, Chiou A, Wei PK (2010) Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images. J Nanobiotechnol 8(1):33CrossRefGoogle Scholar
  157. 157.
    Wypych G (1999) Handbook of fillers, 4th edn. ChemTec Publishing, TorontoGoogle Scholar
  158. 158.
    X Wu, P Liu (2010) Polymer grafted multiwalled carbon nanotubes via facile in-situ solution radical polymerisation. J Exp Nanosci 5(5):383–389. Scholar
  159. 159.
    Xu Z, Gu Q, Hu H, Li F (2008) A novel electrospun polysulfone fiber membrane: application to advanced treatment of secondary bio-treatment sewage. Environ Technol 29:13–21CrossRefGoogle Scholar
  160. 160.
    Xu D, Tan X, Chen C, Wang X (2008) Removal of Pb (II) from aqueous solution by oxidized multiwalled carbon nanotubes. J Hazard Mater 154:407–416CrossRefGoogle Scholar
  161. 161.
    Yadav M, Rhee KY, Park SJ (2014) Synthesis and characterization of grapheneoxide/carboxymethylcellulose/alginate composite blend films. Carbohydr Polym 110:18–25CrossRefGoogle Scholar
  162. 162.
    Yaehne K et al (2013) Nanoparticle accumulation in angiogenic tissues: towards predictable pharmacokinetics. Small 9(18):3118–3127CrossRefGoogle Scholar
  163. 163.
    Zhang Y, Shen Z, Dai C, Zhou X (2014) Removal of selected pharmaceuticals from aqueous solution using magnetic chitosan: Sorption behaviour and mechanism. Environ Sci Pollut Res 21:12780–12789CrossRefGoogle Scholar
  164. 164.
    Zheng L, Abhyankar W, Ouwerling N, Dekker HL, van Veen H, van der Wel NN, Roseboom W, de Koning LJ, Brul S, de Koster CG (2016) Bacillus subtilis spore inner membrane proteome. J Proteome Res 15:585–594CrossRefGoogle Scholar
  165. 165.
    Zou H, Wu SS, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Thandapani Gomathi
    • 1
    Email author
  • K. Rajeshwari
    • 2
  • V. Kanchana
    • 3
  • P. N. Sudha
    • 1
  • K. Parthasarathy
    • 4
  1. 1.Department of ChemistryD.K.M. College for WomenVelloreIndia
  2. 2.Department of ChemistryAdhi College of EngineeringWalajabadIndia
  3. 3.Department of ChemistrySree Sastha Institute of Engineering and TechnologyChennaiIndia
  4. 4.Siddha Central Research Institute, Central Council for Research in Siddha, Ministry of AYUSHArumbakkam, ChennaiIndia

Personalised recommendations