Instrumented Measurement of the Multiple-Ligament Injured Knee: Arthrometers, Stress Radiography, and Laxiometer

  • Lucas Teske
  • Donald D. Johnson
  • Brian R. WatermanEmail author


The laxity within a multiple-ligament injured knee has been a conundrum for the clinician and researcher to be able to reliably and reproducibly quantify. Furthermore, once a method of quantification has been established, there needs to be a defined degree of laxity for which physiologic and pathologic laxity can be differentiated. When these goals are accomplished, the clinician is then equipped with the information necessary to determine how and when to intervene, and the researcher is capable of utilizing this data to study outcomes. There are numerous methods available to provide quantification of laxity including stress radiography, a multitude of arthrometry devices, and laxiometers. The current literature has extensively examined the evaluation of the ACL and to a certain extent, PCL laxity. However, the MCL, LCL, and posterolateral corner remain relatively understudied in regard to quantifiable measurements. The ACL may be reliably assessed with stress radiographs utilizing the Telos device to apply force to the anterior tibia, or with KT-1000 and GNRB arthrometers. Exam of choice for the PCL, MCL, and LCL remains the stress radiograph employing various stress techniques and instruments such as the Telos device and S-type load cells. Rotatory instability such as in the case of PLC injuries may be assessed using rotationometers such as the LARS device or with stress radiography. There are promising new devices for examining the multiple-ligament injured knee such as MRI-compatible devices like the Porto Knee Testing Device, computer-assisted devices as well as quantifiable computer-based visual tracking of the pivot-shift maneuver with KiRA. These newer methods have yet to achieve widespread usage, but may be on the precipice of expansion. Overall, these devices to measure laxity remain an adjunct in the diagnosis and treatment of the multiple-ligament injured knee. The physical exam and MRI remain mainstays in diagnosis and treatment plan algorithms.


Arthrometer Stress radiograph Telos Multi-ligament Knee laxity Instrumented knee testing Stress MRI Accelerometer Rotational instability 

List of Abbreviations


Anterior cruciate ligament




Blumensaat’s line-anterior tibia


Computer-assisted surgery




Kinematic Rapid Assessment


Ligament augmentation and reconstruction system


Lateral collateral ligament


Medial collateral ligament


Magnetic resonance imaging




Posterior cruciate ligament


Posterolateral corner


Porto Knee Testing Device


Side-to-side difference


Vermont Knee Laxity Device


  1. 1.
    Cross M. Clinical terminology for describing knee instability. Sports Med Arthro Rev. 1996;4:1–10.Google Scholar
  2. 2.
    Rohman EM, Macalen JA. Anterior cruciate ligament assessment using arthrometry and stress imaging. Curr Rev Musculoskelet Med. 2016;9:130–8.CrossRefGoogle Scholar
  3. 3.
    Wirz P, von Stokar P, Jakob RP. The effect of knee position on the reproducibility of measurements taken from stress films: a comparison of four measurement methods. Knee Surg Sports Tra Arthrosc. 2000;8:143–8.CrossRefGoogle Scholar
  4. 4.
    Lee YS, Han SH, Jo J, Kwak KS, Nha KW, Kim JH. Comparison of 5 different methods for measuring stress radiographs to improve reproducibility during the evaluation of knee instability. AJSM. 2011;39(6):1275–81.Google Scholar
  5. 5.
    LaPrade RF, Bernhardson AS, Griffith CJ, Macalena JA, Wijdicks CA. Correlation of valgus stress radiographs with medial knee ligament injuries. AJSM. 2010;38(2):330–8.Google Scholar
  6. 6.
    Sawant M, Murty AN, Ireland J. Valgus knee injuries: evaluation and documentation using a simple technique of stress radiography. The Knee. 2004;11:25–8.CrossRefGoogle Scholar
  7. 7.
    LaPrade RF, Heikes C, Bakker AJ, Jakobsen RB. The reproducibility and repeatability of varus stress radiographs in the assessment of isolated fibular collateral ligament and grade-III posterolateral knee injuries. JBJS. 2008;90(10):2069–76.CrossRefGoogle Scholar
  8. 8.
    James EW, Williamks BT, LaPrade RF. Stress radiography for the diagnosis of knee ligament injuries: a systematic review. Clin Orthop Relat Res. 2014;474(9):2644–57.CrossRefGoogle Scholar
  9. 9.
    Beldame J, et al. Anterior knee laxity measurement: comparison of passive stress radiographs Telos and “Lerat”, and GNRB arthrometer. Orthop Tra Surg Res. 2012;98:744–50.CrossRefGoogle Scholar
  10. 10.
    Pugh L, Mascarenhas R, Arneja S, Chin PYK, Leith JM. Current concepts in instrumented knee-laxity testing. AJSM. 2009;37(1):199–210.Google Scholar
  11. 11.
    Beldame J, Bertiaux S, Roussignol X, Lefebvre B, Adam JM, Mouilhade F, Dujardin F. Laxity measurements using stress radiography to assess anterior cruciate ligament tears. Orthop Tra Surg Res. 2011;97:34–43.CrossRefGoogle Scholar
  12. 12.
    Margheritini F, Mancini L, Mauro CS, Mariani PP. Stress radiography for quantifying posterior cruciate ligament deficiency. Arthroscopy. 2003;19(7):706.CrossRefGoogle Scholar
  13. 13.
    Jung TM, Reinhardt C, Scheffler SU, Weiler A. Stress radiography to measure posterior cruciate ligament insufficiency: a comparison of five different techniques. Knee Surg Sports Traumatol Arthrosc. 2006;14:1116–21.CrossRefGoogle Scholar
  14. 14.
    Bouguennec N, Odri GA, Graveleau N, Colombet P. Comparative reproducibility of Telos and GNRB for instrumental measurement of anterior tibial translation in normal knees. Orthop Tra Surg Res. 2015;101:301–5.CrossRefGoogle Scholar
  15. 15.
    Espregueira-Mendes J, et al. Assessment of rotatory laxity in anterior cruciate ligament-deficient knees using magnetic resonance imaging with Porto-knee testing device. Knee Surg Sports Tra Arthrosc. 2012;20:671–8.CrossRefGoogle Scholar
  16. 16.
    Arneja S, Leith J. Review article: validity of the KT-1000 knee ligament arthrometer. J of Orthop Surg. 2009;17(1):77–9.CrossRefGoogle Scholar
  17. 17.
    Liu SH, Osti L, Henry M, Bocchi L. The diagnosis of acute complete tears of the anterior cruciate ligament. Comparison of MRI, arthrometry and clinical examination. JBJS Br. 1995;77(4):586–8.PubMedGoogle Scholar
  18. 18.
    Hanten WB, Pace MB. Reliability of measuring anterior laxity of the knee joint using a knee ligament arthrometer. Phys Ther. 1987;67(3):357–9.CrossRefGoogle Scholar
  19. 19.
    Bach BR, Warren RF, Flynn WM, Kroll M, Wickiwiecz TL. Arthrometric evaluation of knees that have a torn anterior cruciate ligament. JBJS. 1990;72(9):1299–306.CrossRefGoogle Scholar
  20. 20.
    Highgenboten CL, Jackson AW, Jansson KA. KT-1000 arthrometer: conscious and unconscious test results using 15, 20, and 30 pounds of force. AJOSM. 1992;20(4):450–4.Google Scholar
  21. 21.
    Sernert N, Kartus J, Kohler K, Ejerhed L, Karlsson J. Evaluation of the reproducibility of the KT-1000 arthrometer. Scand J Med Sci Sports. 2001;11(2):120–5.CrossRefGoogle Scholar
  22. 22.
    Huber FE, Irrgang JJ, Harner C, Lephart S. Intratester and intertester reliability of the KT-1000 arthrometer in the assessment of posterior laxity of the knee. AJOSM. 1997;25(4):479–85.Google Scholar
  23. 23.
    Van Eck CF, Loopik M, van den Bekerom MP, Fu FH, Kerkhoffs G. Methods to diagnose acute anterior cruciate ligament rupture: a meta-analysis of instrumented knee laxity tests. Knee Surg Sports Tra Arthrosc. 2013;21:1989–97.CrossRefGoogle Scholar
  24. 24.
    Forster IW, Warren-Smith CD, Tew M. Is the KT1000 knee ligament arthrometer reliable? JBJS Br. 1989;71(5):843–7.PubMedGoogle Scholar
  25. 25.
    Wiertsema SH, van Hooff HJA, Migchelsen LAA, Steultjens MPM. Reliability of the KT1000 arthrometer and the Lachman test in patients with an ACL rupture. The Knee. 2008;15(2):107–10.CrossRefGoogle Scholar
  26. 26.
    Berry J, et al. Error estimates in novice and exper raters for the KT-1000 arthrometer. J Orthop Sports Phys Ther. 1999;29(1):49–55.CrossRefGoogle Scholar
  27. 27.
    Fiebert I, Gresley J, Hoffman S, Kunkel K. Comparative measurements of anterior tibial translation using the KT-1000 knee arthrometer with the leg in neutral, internal rotation, and external rotation. J Orthop Sports Phys Ther. 1994;19(6):331–4.CrossRefGoogle Scholar
  28. 28.
    Robert H, Nouveau S, Gageot S, Gagniere B. A new knee arthrometer, the GNRB experience in ACL complete and partial tears. Orthop Tra Surg Res. 2009;95(3):171–6.CrossRefGoogle Scholar
  29. 29.
    Collette M, Courville J, Forton M, Gagniere B. Objective evaluation of anterior knee laxity; comparison of the KT-1000 and GNRB arthrometers. Knee Surg Sports Tra Arthrosc. 2012;20:2233–8.CrossRefGoogle Scholar
  30. 30.
    Vauhnik R, Morrissey MC, Perme MP, Sevsek F, Rugelj D. Inter-rater reliability of the GNRB knee arthrometer. The Knee. 2014;21(2):541–3.CrossRefGoogle Scholar
  31. 31.
    Vauhnik R, Perme MP, Barcellona MG, Rugelj D, Morrissey MC, Sevsek F. Robotic knee laxity testing: reliability and normative data. The Knee. 2013;20(4):250–5.CrossRefGoogle Scholar
  32. 32.
    Balasch H, Schiller M, Friebel H, Hoffmann F. Evaluation of anterior knee joint instability with the rolimeter. A test in comparison with manual assessment and measuring with the KT-1000 arthrometer. Knee Surg Sports Tra Arthrosc. 1999;7(4):204–8.CrossRefGoogle Scholar
  33. 33.
    Ganko A, Engebretsen L, Ozer H. The rolimter: a new arthrometer compared with the KT-1000. Knee Surg Sports Tra Arthrosc. 2000;8(1):36–9.CrossRefGoogle Scholar
  34. 34.
    Panisset JC, Ntagiopoulos PG, Saggin PR, Dejour D. A comparison of Telos stress radiography versus Rolimter in the diagnosis of different patterns of anterior cruciate ligament tears. Orthop Tra surg Res. 2012;98(7):751–8.CrossRefGoogle Scholar
  35. 35.
    Hoher J, Akoto R, Helm P, Shafizadeh S, Bouillon B, Balke M. Rolimeter measurements are suitable as substitutes to stress radiographs in the evaluation of posterior knee laxity. Knee Surg Sports Tra Arthrosc. 2015;23(4):1107–12.CrossRefGoogle Scholar
  36. 36.
    Uh BS, Beynnon BD, Churchill DL, Haugh LD, Risberg MA, Fleming BC. A new device to measure knee laxity during weightbearing and non-weightbearing conditions. J Orthop Res. 2001;19(6):1185–91.CrossRefGoogle Scholar
  37. 37.
    Shultz SJ, Shimokochi Y, Nguyen AD, Schmitz RJ, Beynnon BD, Perrin DH. Measurement of varus-valgus and internal-external rotational knee laxities in vivo—part I: assessment of measurement reliability and bilateral asymmetry. J Orthop Res. 2007;25(8):981–8.CrossRefGoogle Scholar
  38. 38.
    Bleday RM, Fanelli GC, Giannotti BF, Edson CJ, Barett TA. Instrumented measurement of the posterolateral corner. Arthroscopy. 1998;14(5):489–94.CrossRefGoogle Scholar
  39. 39.
    Zaffagnini S, et al. Current use of navigation system in ACL surgery: a historical review. Knee Surg Sports Tra Arthrosc. 2016;24(11):3396–401.CrossRefGoogle Scholar
  40. 40.
    Ishibashi Y, Tsuda E, Yamamoto Y, Tsukada H, Toh S. Navigation evaluation of the pivot-shift phenomenon during double-bundle anterior cruciate ligament reconstruction: is the posterolateral bundle more important? Arthroscopy. 2009;25(5):488–95.CrossRefGoogle Scholar
  41. 41.
    Berruto M, Uboldi F, Gala L, Marelli B, Albisetti W. Is triaxial accelerometer reliable in the evaluation and grading of knee pivot-shift phenomenon? Knee Surg Sports Tra Arthrosc. 2013;21(4):981–5.CrossRefGoogle Scholar
  42. 42.
    Hoshino Y, et al. Quantitative evaluation of the pivot shift by image analysis using the iPad. Knee Surg Sports Tra Arthrosc. 2013;21(4):975–80.CrossRefGoogle Scholar
  43. 43.
    Musahl V, et al. Validation of quantitative measures of rotatory knee laxity. AJSM. 2016;44(9):2393–8.Google Scholar
  44. 44.
    Sirisena D, Papi E, Tillett E. Clinical assessment of antero-medial rotational knee laxity: a systematic review. Knee Surg Sports Tra Arthrosc. 2017;25:1068–77.CrossRefGoogle Scholar
  45. 45.
    Murgier J, Beranger JS, Boisrenoult P, Steltzlen C, Pujol N. Prospective comparative study of knee laxity with four different methods in anterior cruciate ligament tears. Int Orthop. 2018;42(8):1845–51.CrossRefGoogle Scholar
  46. 46.
    Gwathmey FW, Tompkins MA, Gaskin CM, Miller MD. Can stress radiography of the knee help characterize posterolateral corner injury? Clin Orthop Relat Res. 2012;470(3):768–73.CrossRefGoogle Scholar
  47. 47.
    Hoshino Y, et al. Quantitative evaluation of the pivot shift by image analysis using the iPad. Knee Surg Sports Tra Arthrosc. 2013;21:975–80.CrossRefGoogle Scholar
  48. 48.
    Schulz MS, Russe K, Lampakis G, Strobel MJ. Reliability of stress radiography for evaluation of posterior knee laxity. AJOSM. 2005;33(4):502–6.Google Scholar
  49. 49.
    Ericsson D, Ostenberg AH, Andersson E, Alricsson M. Test-retest reliability of repeated knee laxity measurements in the acute phase following a knee trauma using a rolimeter. J Exerc Rehab. 2017;13(5):550–8.CrossRefGoogle Scholar
  50. 50.
    Monaco E, Labianca L, Maestri B, Carli AD, Conteduca F, Ferretti A. Instrumented measurements of knee laxity: KT-1000 versus navigation. Knee Surg Sports Tra Arthrosc. 2009;17:617–21.CrossRefGoogle Scholar
  51. 51.
    Berruto M, Uboldi F, Gala L, Marelli B, Albisetti W. Is triaxial accelerometer reliable in the evaluation and grading of knee pivot-shift phenomenon? Knee Surg Sports Tra Arthrosc. 2013;21:981–5.CrossRefGoogle Scholar
  52. 52.
    Lefevre N, Bohu Y, Naouri JF, Klouche S, Herman S. Validity of GNRB arthrometer compared to Telos in the assessment of partial anterior cruciate ligament tears. Knee Surg Sports Tra Arthrosc. 2014;22(2):285–90.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lucas Teske
    • 1
  • Donald D. Johnson
    • 2
  • Brian R. Waterman
    • 3
    Email author
  1. 1.Department of Orthopaedic SurgeryWake Forest University School of MedicineWinston-SalemUSA
  2. 2.Sports Medicine ClinicOrthopaedics, Carleton UniversityOttawaCanada
  3. 3.Department of Orthopaedic SurgeryWake Forest University School of MedicineWinston-SalemUSA

Personalised recommendations