Advertisement

On Diffusion Layers of SPN Based Format Preserving Encryption Schemes: Format Preserving Sets Revisited

  • Rana Barua
  • Kishan Chand Gupta
  • Sumit Kumar Pandey
  • Indranil Ghosh Ray
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11356)

Abstract

In Inscrypt 2016, Chang et al. proposed a new family of substitution-permutation (SPN) based format preserving encryption algorithms in which a non-MDS (Maximum Distance Separable) matrix was used in its diffusion layer. In the same year in Indocrypt 2016 Gupta et al., in their attempt to provide a reason for choosing non-MDS over MDS matrices, introduced an algebraic structure called format preserving sets (FPS). They formalised the notion of this structure with respect to a matrix both of whose elements are coming from some finite field \(\mathbb {F}_q\). Many interesting properties of format preserving sets \(\mathbb {S} \subseteq \mathbb {F}_q\) with respect to a matrix \(M(\mathbb {F}_q)\) were derived. Nevertheless, a complete characterisation of such sets could not be derived. In this paper, we fill that gap and give a complete characterisation of format preserving sets when the underlying algebraic structure is a finite field. Our results not only generalise and subsume those of Gupta et al., but also obtain some of these results over a more generic algebraic structure viz. ring \(\mathcal {R}\). We obtain a complete characterisation of format preserving sets over rings when the sets are closed under addition. Finally, we provide examples of format preserving sets of cardinalities \(10^3\) and \(26^3\) with respect to \(4 \times 4\) MDS matrices over some rings which are not possible over any finite field.

Keywords

Diffusion layer Format preserving encryption Format preserving set 

References

  1. 1.
    Bellare, M., Ristenpart, T., Rogaway, P., Stegers, T.: Format-preserving encryption. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 295–312. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-05445-7_19CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Rogaway, P.: On the construction of variable-input-length ciphers. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol. 1636, pp. 231–244. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48519-8_17CrossRefGoogle Scholar
  3. 3.
    Black, J., Rogaway, P.: Ciphers with arbitrary finite domains. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 114–130. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45760-7_9CrossRefGoogle Scholar
  4. 4.
    Brightwell, M., Smith, H.: Using datatype-preserving encryption to enhance data warehouse security. In: 20th National Information Systems Security Conference Proceedings (NISSC), pp. 141–149 (1997)Google Scholar
  5. 5.
    Chang, D., et al.: SPF: a new family of efficient format-preserving encryption algorithms. In: Chen, K., Lin, D., Yung, M. (eds.) Inscrypt 2016. LNCS, vol. 10143, pp. 64–83. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-54705-3_5CrossRefGoogle Scholar
  6. 6.
    Grillet, P.A.: Semigroups: An Introduction to the Structure Theory. CRC Press, New York (1995)zbMATHGoogle Scholar
  7. 7.
    Gupta, K.C., Pandey, S.K., Venkateswarlu, A.: Towards a general construction of recursive MDS diffusion layers. Des. Codes Cryptogr. 82(1–2), 179–195 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gupta, K.C., Pandey, S.K., Ray, I.G.: Format preserving sets: on diffusion layers of format preserving encryption schemes. In: Dunkelman, O., Sanadhya, S.K. (eds.) INDOCRYPT 2016. LNCS, vol. 10095, pp. 411–428. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49890-4_23CrossRefGoogle Scholar
  9. 9.
    Halevi, S., Rogaway, P.: A tweakable enciphering mode. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45146-4_28CrossRefGoogle Scholar
  10. 10.
    Halevi, S., Rogaway, P.: A parallelizable enciphering mode. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 292–304. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24660-2_23CrossRefGoogle Scholar
  11. 11.
    Herstein, I.N.: Topics in Algebra. Wiley, New York (1975)zbMATHGoogle Scholar
  12. 12.
    Hoang, V.T., Rogaway, P.: On generalized Feistel networks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 613–630. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14623-7_33CrossRefGoogle Scholar
  13. 13.
    Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Cambridge (2008)zbMATHGoogle Scholar
  14. 14.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes, vol. 16. Elsevier, New York (1977)zbMATHGoogle Scholar
  15. 15.
    Morris, B., Rogaway, P., Stegers, T.: How to encipher messages on a small domain. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 286–302. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03356-8_17CrossRefGoogle Scholar
  16. 16.
    Musili, C.: Introduction to Rings and Modules. Narosa Publishing House, New Delhi (1997)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Rana Barua
    • 1
  • Kishan Chand Gupta
    • 2
  • Sumit Kumar Pandey
    • 3
  • Indranil Ghosh Ray
    • 4
  1. 1.R.C. Bose Centre for Cryptology and SecurityIndian Statistical InstituteKolkataIndia
  2. 2.Applied Statistics UnitIndian Statistical InstituteKolkataIndia
  3. 3.Ashoka UniversitySonepatIndia
  4. 4.Department of Electrical and Electronic EngineeringCity University, LondonLondonUK

Personalised recommendations