Advertisement

Non-Interactive and Fully Output Expressive Private Comparison

  • Yu Ishimaki
  • Hayato Yamana
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11356)

Abstract

Private comparison protocols are fundamental to the field of secure computation. Recently, Lu et al. (ASIACCS 2018) proposed a new protocol, \(\mathsf {XCMP}\), which is based on a ring-based fully homomorphic encryption (FHE) scheme. In that scheme, two \(\mu \)-bit integers a and b are compared in encrypted form without revealing the plaintext to an evaluator. The protocol outputs a bit in encrypted form, which indicates whether \(a > b\). \(\mathsf {XCMP}\) has the following three advantages: the output can be reused for further processing, the evaluation is performed without any interactions with a decryptor having a secret key, and the required multiplicative depth is only 1. However, \(\mathsf {XCMP}\) has two potential disadvantages. First, the protocol result preserves both additive and multiplicative homomorphisms over \(\mathbb {Z}_t\) only, whereas the underlying FHE scheme can support a much larger plaintext space of \(\mathbb {Z}_t[X]/(X^N+1)\) for a prime t and a power-of-two N; this restricts the functionality of applications using the comparison result. Second, the bit length \(\mu \) of the integers to be compared is no more than \(\log N\) (typically 16 bits, at most). Thus, it is difficult for \(\mathsf {XCMP}\) to handle larger integers. In this paper, we propose a non-interactive private comparison protocol that solves the aforementioned problems and outputs an additively and multiplicatively reusable comparison result over the ring without adding an extremely large computational overhead over \(\mathsf {XCMP}\). Moreover, by regarding a \(\mu ~(>16)\)-bit integer as a sequence of chunks, we show that the multiplicative depth required for our comparison protocol is logarithmic in the number of chunks. This value is much smaller than the naïve solution with a multiplicative depth of \(\log \mu \). Experiment results demonstrate that our protocol introduces a subtle overhead over \(\mathsf {XCMP}\). Remarkably, we experimentally demonstrate that our protocol for a larger domain is comparable to the construction given by one of the state-of-the-art bitwise FHE schemes.

Keywords

Homomorphic encryption Secure computation Non-interactive private comparison 

Notes

Acknowledgment

This work was supported by JST CREST Grant Number JPMJCR1503, Japan and Japan-US Network Opportunity 2 by the Commissioned Research of National Institute of Information and Communications Technology (NICT), JAPAN. The authors would like to thank Kurt Rohloff and Yuriy Polyakov for their supports for PALISADE library.

References

  1. 1.
    Aguilar-Melchor, C., Barrier, J., Guelton, S., Guinet, A., Killijian, M.-O., Lepoint, T.: NFLlib: NTT-Based fast lattice library. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 341–356. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-29485-8_20CrossRefGoogle Scholar
  2. 2.
    Albrecht, M., Player, R., Scott, S.: On the concrete hardness of learning with Errors. J. Math. Cryptol. 9(3), 169–203 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Angel, S., Chen, H., Laine, K., Setty, S.: PIR with compressed queries and amortized query processing. In: Proceedings of the 2018 IEEE Symposium on Security and Privacy (SP), pp. 962–979 (2018)Google Scholar
  4. 4.
    Barni, M., et al.: Privacy-preserving fingercode authentication. In: Proceedings of the 12th ACM Workshop on Multimedia and Security (MM & Sec 2010), pp. 231–240 (2010)Google Scholar
  5. 5.
    Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based fully homomorphic encryption scheme. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 45–64. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-45239-0_4CrossRefGoogle Scholar
  6. 6.
    Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over encrypted data. In: Proceedings of NDSS 2015 (2015)Google Scholar
  7. 7.
    Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_50CrossRefGoogle Scholar
  8. 8.
    Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Proceedings of ITCS 2012, pp. 309–325 (2012)Google Scholar
  9. 9.
    Chase, M., et al.: Security of Homomorphic Encryption. Technical report (2017). HomomorphicEncryption.orgGoogle Scholar
  10. 10.
    Chen, H., Han, K.: Homomorphic lower digits removal and improved FHE bootstrapping. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 315–337. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78381-9_12CrossRefGoogle Scholar
  11. 11.
    Chen, H., Han, K., Huang, Z., Jalali, A., Laine, K.: Simple Encrypted Arithmetic Library v2.3.0. Technical report (2017). https://www.microsoft.com/en-us/research/publication/simple-encrypted-arithmetic-library-v2-3-0/
  12. 12.
    Cheon, J.H., Kim, M., Kim, M.: Optimized search-and-compute circuits and their application to query evaluation on encrypted data. IEEE Trans. Inf. Forensics Secur. 11(1), 188–199 (2016)CrossRefGoogle Scholar
  13. 13.
    Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53887-6_1CrossRefzbMATHGoogle Scholar
  14. 14.
    Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic operations and efficient circuit bootstrapping for TFHE. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 377–408. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70694-8_14CrossRefGoogle Scholar
  15. 15.
    Damgard, I., Geisler, M., Kroigard, M.: Homomorphic encryption and secure comparison. Int. J. Appl. Cryptol. 1(1), 22–31 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ducas, L., Micciancio, D.: FHEW: Bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46800-5_24CrossRefzbMATHGoogle Scholar
  17. 17.
    Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.: Privacy-preserving face recognition. In: Goldberg, I., Atallah, M.J. (eds.) PETS 2009. LNCS, vol. 5672, pp. 235–253. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03168-7_14CrossRefGoogle Scholar
  18. 18.
    Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive, Report 2012/144 (2012)Google Scholar
  19. 19.
    Gentry, C., Halevi, S., Jutla, C., Raykova, M.: Private database access with HE-over-ORAM architecture. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 172–191. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-28166-7_9CrossRefGoogle Scholar
  20. 20.
    Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_28CrossRefGoogle Scholar
  21. 21.
    Halevi, S., Polyakov, Y., Shoup, V.: An improved RNS variant of the BFV Homomorphic encryption scheme. Cryptology ePrint Archive, Report 2018/117 (2018)Google Scholar
  22. 22.
    Lu, W., Zhou, J., Sakuma, J.: Non-interactive and output expressive private comparison from homomorphic encryption. In: Proceedings of the 2018 on Asia Conference on Computer and Communications Security (ASIACCS 2018), pp. 67–74 (2018)Google Scholar
  23. 23.
    Polyakov, Y., Rohloff, K., Ryan, G.W.: PALISADE Lattice Cryptography Library User Manual (v1.2.0). Technical report (2018). https://git.njit.edu/palisade/PALISADE/blob/PALISADE-v1.2/doc/palisade_manual.pdf
  24. 24.
    Saha, T.K., Koshiba, T.: An efficient privacy-preserving comparison protocol. In: Barolli, L., Enokido, T., Takizawa, M. (eds.) NBiS 2017. LNDECT, vol. 7, pp. 553–565. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-65521-5_48CrossRefGoogle Scholar
  25. 25.
    Saha, T.K., Deevashwer, D., Koshiba, T.: Private comparison protocol and its application to range queries. In: Fortino, G., Ali, A., Pathan, M., Guerrieri, A., Di Fatta, G. (eds.) IDCS 2017. LNCS, vol. 10794, pp. 128–141. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-97795-9_12CrossRefGoogle Scholar
  26. 26.
    Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes Cryptogr. 71(1), 57–81 (2014)CrossRefGoogle Scholar
  27. 27.
    Yao, A.C.: How to generate and exchange secrets. In: Proceedings of 27th Annual Symposium on Foundations of Computer Science (SFCS 1986), pp. 162–167 (1986)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Waseda UniversityTokyoJapan

Personalised recommendations