Advertisement

Introduction

  • Yuri D. Tsvetkov
  • Michael K. Bowman
  • Yuri A. Grishin
Chapter

Abstract

PELDOR or DEER spectroscopy is a magnetic resonance method to probe spin interactions between free radicals. It was proposed and demonstrated in the 1980s and has developed into a powerful means to routinely measure distances in non-crystalline chemical, macromolecular and biological systems on the nanometer length scale. The basis of PELDOR spectroscopy is introduced using a simple model with two unpaired electron spins.

References

  1. 1.
    Milov AD, Salikhov KM, Shirov MD (1981) Application of eldor in electron-spin echo for paramagnetic center space distribution in solids. Fiz Tverd Tela 23(4):975–982Google Scholar
  2. 2.
    Stein RA, Beth AH, Hustedt EJ (2015) A straightforward approach to the analysis of double electron-electron resonance data. Methods Enzymol 563:531–567.  https://doi.org/10.1016/bs.mie.2015.07.031CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Milov AD, Ponomarev AB, Tsvetkov YD (1984) Modulation beats of signal of double electron-electron resonance in spin-echo for biradical systems. J Struct Chem 25(5):710–713.  https://doi.org/10.1007/Bf00747913CrossRefGoogle Scholar
  4. 4.
    Klauder JR, Anderson PW (1962) Spectral diffusion decay in spin resonance experiments. Phys Rev 125(3):912–932.  https://doi.org/10.1103/PhysRev.125.912CrossRefGoogle Scholar
  5. 5.
    Hahn EL (1950) Spin echoes. Phys Rev 80(4):580–594CrossRefGoogle Scholar
  6. 6.
    Salikhov KM, Semenov AG, Tsvetkov YD (1976) Electron spin echo and its applications. Nauka, NovosibirskGoogle Scholar
  7. 7.
    Pannier M, Veit S, Godt A, Jeschke G, Spiess HW (2000) Dead-time free measurement of dipole-dipole interactions between electron spins. J Magn Reson 142(2):331–340.  https://doi.org/10.1006/jmre.1999.1944CrossRefPubMedGoogle Scholar
  8. 8.
    Kaplan DE, Hahn EL (1958) Experiences de double irradiation en resonance magnetique par la methode dimpulsions. J Phys-Paris 19(11):821–825.  https://doi.org/10.1051/jphysrad:019580019011082100CrossRefGoogle Scholar
  9. 9.
    Graf R, Demco DE, Gottwald J, Hafner S, Spiess HW (1997) Dipolar couplings and internuclear distances by double-quantum nuclear magnetic resonance spectroscopy of solids. J Chem Phys 106(3):885–895.  https://doi.org/10.1063/1.473169CrossRefGoogle Scholar
  10. 10.
    Emshwiller M, Hahn EL, Kaplan D (1960) Pulsed nuclear resonance spectroscopy. Phys Rev 118(2):414–424.  https://doi.org/10.1103/PhysRev.118.414CrossRefGoogle Scholar
  11. 11.
    Maryasov AG, Tsvetkov YD (2000) Formation of the pulsed electron-electron double resonance signal in the case of a finite amplitude of microwave fields. Appl Magn Reson 18(4):583–605.  https://doi.org/10.1007/Bf03162305CrossRefGoogle Scholar
  12. 12.
    Milov AD, Maryasov AG, Tsvetkov YD (1998) Pulsed electron double resonance (PELDOR) and its applications in free-radicals research. Appl Magn Reson 15(1):107–143.  https://doi.org/10.1007/Bf03161886CrossRefGoogle Scholar
  13. 13.
    Tsvetkov YD (1989) ELDOR in ESE study of magnetic dipole-dipole interactions. In: Keijzers CP, Reijerse EJ, Schmidt J (eds) Pulsed EPR: a new field of applications. North Holland, Amsterdam, pp 206–218Google Scholar
  14. 14.
    Maryasov AG, Tsvetkov YD, Raap J (1998) Weakly coupled radical pairs in solids: ELDOR in ESE structure studies. Appl Magn Reson 14(1):101–113.  https://doi.org/10.1007/Bf03162010CrossRefGoogle Scholar
  15. 15.
    Parmon VN, Kokorin AI, Zhidomirov GM (1980) Stable biradicals. Nauka, MoscowGoogle Scholar
  16. 16.
    Bowman MK, Maryasov AG, Kim N, DeRose VJ (2004) Visualization of distance distribution from pulsed double electron-electron resonance data. Appl Magn Reson 26(1–2):23–39.  https://doi.org/10.1007/Bf03166560CrossRefGoogle Scholar
  17. 17.
    Abragam A (1961) The Principles of Nuclear Magnetism. Clarendon Press, OxfordGoogle Scholar
  18. 18.
    Raitsimring AM, Salikhov KM (1985) Electron spin echo method as used to analyze the spatial distribution of paramagnetic centers. Bull Magn Reson 7(4):184–217Google Scholar
  19. 19.
    Kutsovsky YE, Maryasov AG, Aristov YI, Parmon VN (1990) Electron-spin echo as a tool for investigation of surface-structure of finely dispersed fractal solids. React Kinet Catal L 42(1):19–24.  https://doi.org/10.1007/Bf02137612CrossRefGoogle Scholar
  20. 20.
    Milov AD, Samoilova RI, Tsvetkov YD, Gusev VA, Formaggio F, Crisma M, Toniolo C, Raap J (2002) Spatial distribution of spin-labeled trichogin GA IV in the gram-positive bacterial cell membrane determined from PELDOR data. Appl Magn Reson 23(1):81–95.  https://doi.org/10.1007/Bf03166186CrossRefGoogle Scholar
  21. 21.
    Milov AD, Tsvetkov YD (1997) Double electron-electron resonance in electron spin echo: Conformations of spin-labeled poly-4-vinilpyridine in glassy solutions. Appl Magn Reson 12(4):495–504CrossRefGoogle Scholar
  22. 22.
    Uemura S, Okada M, Abedin KM, Nakatsuka H (1992) Fractal interpretation of Non-Lorentzian persistent hole shapes in organic glasses. Chem Phys Lett 189(2):193–196.  https://doi.org/10.1016/0009-2614(92)85122-QCrossRefGoogle Scholar
  23. 23.
    Tsvetkov YD (2004) Peptide aggregation and conformation properties as studied by pulsed electron-electron double resonance. In: Bender C, Berliner LJ (eds) EPR: instrumental methods. Biological magnetic resonance, vol 21. Springer, New York.  https://doi.org/10.1007/978-1-4419-8951-2CrossRefGoogle Scholar
  24. 24.
    Milov AD, Maryasov AG, Tsvetkov YD, Raap J (1999) Pulsed ELDOR in spin-labeled polypeptides. Chem Phys Lett 303(1–2):135–143.  https://doi.org/10.1016/S0009-2614(99)00220-1CrossRefGoogle Scholar
  25. 25.
    Milov AD, Tsvetkov YD (2000) Charge effect on relative distance distribution of Fremy’s radical ions in frozen glassy solution studied by PELDOR. Appl Magn Reson 18(2):217–226.  https://doi.org/10.1007/Bf03162112CrossRefGoogle Scholar
  26. 26.
    Milov AD, Ponomarev AB, Tsvetkov YD (1984) Electron electron double-resonance in electron-spin echo—model biradical systems and the sensitized photolysis of decalin. Chem Phys Lett 110(1):67–72.  https://doi.org/10.1016/0009-2614(84)80148-7CrossRefGoogle Scholar
  27. 27.
    Ponomarev AB, Milov AD, Tsvetkov YD (1988) Double electron-electron resonance in electron-spin echo and the spatial distribution of radicals formed by irradiation of frozen cyclohexane. Khim Fiz 7(12):1673–1679Google Scholar
  28. 28.
    Ponomarev AB, Milov AD, Tsvetkov YD (1990) Double electron-electron resonance in electron-spin echo—spatial distribution of radicals forming during radiolysis of polyethylene, monocarboxylic and dicarboxylic acids. Khim Fiz 9(4):498–503Google Scholar
  29. 29.
    Salikhov KM, Khairuzhdinov IT, Zaripov RB (2014) Three-pulse ELDOR theory revisited. Appl Magn Reson 45(6):573–619.  https://doi.org/10.1007/s00723-014-0541-7CrossRefGoogle Scholar
  30. 30.
    Salikhov KM, Khairuzhdinov IT (2014) Four-pulse ELDOR theory of the spin ½ label pairs extended to overlapping EPR spectra and to overlapping pump and observer excitation bands. Appl Magn Reson 46(1):67–83.  https://doi.org/10.1007/s00723-014-0609-4CrossRefGoogle Scholar
  31. 31.
    Edwards TH, Stoll S (2018) Optimal Tikhonov regularization for DEER spectroscopy. J Magn Reson 288:58–68.  https://doi.org/10.1016/j.jmr.2018.01.021CrossRefPubMedGoogle Scholar
  32. 32.
    Jeschke G, Koch A, Jonas U, Godt A (2002) Direct conversion of EPR dipolar time evolution data to distance distributions. J Magn Reson 155(1):72–82.  https://doi.org/10.1006/jmre.2001.2498CrossRefPubMedGoogle Scholar
  33. 33.
    Milov AD, Tsvetkov YD, Formaggio F, Oancea S, Toniolo C, Raap J (2003) Aggregation of spin labeled trichogin GA IV dimers: distance distribution between spin labels in frozen solutions by PELDOR data. J Phys Chem B 107(49):13719–13727.  https://doi.org/10.1021/jp035057xCrossRefGoogle Scholar
  34. 34.
    Chiang YW, Borbat PP, Freed JH (2005) The determination of pair distance distributions by pulsed ESR using Tikhonov regularization. J Magn Reson 172(2):279–295.  https://doi.org/10.1016/j.jmr.2004.10.012CrossRefPubMedGoogle Scholar
  35. 35.
    Jeschke G, Panek G, Godt A, Bender A, Paulsen H (2004) Data analysis procedures for pulse ELDOR measurements of broad distance distributions. Appl Magn Reson 26(1–2):223–244.  https://doi.org/10.1007/Bf03166574CrossRefGoogle Scholar
  36. 36.
    Dzuba SA (2016) The determination of pair-distance distribution by double electron-electron resonance: regularization by the length of distance discretization with Monte Carlo calculations. J Magn Reson 269:113–119.  https://doi.org/10.1016/j.jmr.2016.06.001CrossRefPubMedGoogle Scholar
  37. 37.
    Matveeva AG, Nekrasov VM, Maryasov AG (2017) Analytical solution of the PELDOR inverse problem using the integral Mellin transform. Phys Chem Chem Phys 19(48):32381–32388.  https://doi.org/10.1039/c7cp04059hCrossRefPubMedGoogle Scholar
  38. 38.
    Tikhonov AN, Arsenin VY (1977) Solutions of ill-posed problems. Scripta series in mathematics. Winston; Halsted Press, Washington, New YorkGoogle Scholar
  39. 39.
    Bowman MK, Maryasov AG (2007) Dynamic phase shifts in nanoscale distance measurements by double electron electron resonance (DEER). J Magn Reson 185(2):270–282.  https://doi.org/10.1016/j.jmr.2006.12.011CrossRefPubMedGoogle Scholar
  40. 40.
    Jeschke G, Chechik V, Ionita P, Godt A, Zimmermann H, Banham J, Timmel CR, Hilger D, Jung H (2006) DeerAnalysis2006—a comprehensive software package for analyzing pulsed ELDOR data. Appl Magn Reson 30(3–4):473–498.  https://doi.org/10.1007/Bf03166213CrossRefGoogle Scholar
  41. 41.
    Borbat PP, Freed JH (2002) Double-quantum ESR and distance measurements. In: Berliner LJ, Eaton SS, Eaton GR (eds) Distance measurements in biological systems by EPR, vol 19. Springer, New York.  https://doi.org/10.1007/b111467CrossRefGoogle Scholar
  42. 42.
    Godt A, Schulte M, Zimmermann H, Jeschke G (2006) How flexible are poly(para-phenyleneethynylene)s? Angew Chem Int Edit 45(45):7560–7564.  https://doi.org/10.1002/anie.200602807CrossRefGoogle Scholar
  43. 43.
    Sicoli G, Mathis G, Aci-Seche S, Saint-Pierre C, Boulard Y, Gasparutto D, Gambarelli S (2009) Lesion-induced DNA weak structural changes detected by pulsed EPR spectroscopy combined with site-directed spin labelling. Nucleic Acids Res 37(10):3165–3176.  https://doi.org/10.1093/nar/gkp165CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Schnegg A, Dubinskii AA, Fuchs MR, Grishin YA, Kirilina EP, Lubitz W, Plato M, Savitsky A, Mobius K (2007) High-field EPR, ENDOR and ELDOR on bacterial photosynthetic reaction centers. Appl Magn Reson 31(1–2):59–98CrossRefGoogle Scholar
  45. 45.
    Mobius K, Lubitz W, Savitsky A (2013) High-field EPR on membrane proteins—crossing the gap to NMR. Prog Nucl Mag Res Sp 75:1–49.  https://doi.org/10.1016/j.pnmrs.2013.07.002CrossRefGoogle Scholar
  46. 46.
    Savitsky A, Dubinskii AA, Flores M, Lubitz W, Mobius K (2007) Orientation-resolving pulsed electron dipolar high-field EPR spectroscopy on disordered solids: I. Structure of spin-correlated radical pairs in bacterial photosynthetic reaction centers. J Phys Chem B 111(22):6245–6262.  https://doi.org/10.1021/jp070016cCrossRefPubMedGoogle Scholar
  47. 47.
    Denysenkov VP, Prisner TF, Stubbe J, Bennati M (2006) High-field pulsed electron-electron double resonance spectroscopy to determine the orientation of the tyrosyl radicals in ribonucleotide reductase. P Natl Acad Sci USA 103(36):13386–13390.  https://doi.org/10.1073/pnas.0605851103CrossRefGoogle Scholar
  48. 48.
    Polyhach Y, Godt A, Bauer C, Jeschke G (2007) Spin pair geometry revealed by high-field DEER in the presence of conformational distributions. J Magn Reson 185(1):118–129.  https://doi.org/10.1016/j.jmr.2006.11.012CrossRefPubMedGoogle Scholar
  49. 49.
    Bowen AM, Tait CE, Timmel CR, Harmer JR (2013) Orientation-selective deer using rigid spin labels, cofactors, metals, and clusters. In: Timmel CR, Harmer JR (eds) Structural information from spin-labels and intrinsic paramagnetic centres in the biosciences. Springer, Berlin, Heidelberg, pp 283–327.  https://doi.org/10.1007/430_2013_115CrossRefGoogle Scholar
  50. 50.
    Yang ZY, Kise D, Saxena S (2010) An approach towards the measurement of nanometer range distances based on Cu2+ ions and ESR. J Phys Chem B 114(18):6165–6174.  https://doi.org/10.1021/jp911637sCrossRefPubMedGoogle Scholar
  51. 51.
    Lovett JE, Bowen AM, Timmel CR, Jones MW, Dilworth JR, Caprotti D, Bell SG, Wong LL, Harmer J (2009) Structural information from orientationally selective DEER spectroscopy. Phys Chem Chem Phys 11(31):6840–6848.  https://doi.org/10.1039/b907010aCrossRefPubMedGoogle Scholar
  52. 52.
    Bode BE, Plackmeyer J, Prisner TF, Schiemann O (2008) PELDOR measurements on a nitroxide-labeled Cu(II) porphyrin: Orientation selection, spin-density distribution, and conformational flexibility. J Phys Chem A 112(23):5064–5073.  https://doi.org/10.1021/jp710504kCrossRefPubMedGoogle Scholar
  53. 53.
    Milov AD, Naumov BD, Tsvetkov YD (2004) The effect of microwave pulse duration on the distance distribution function between spin labels obtained by PELDOR data analysis. Appl Magn Reson 26(4):587–599.  https://doi.org/10.1007/Bf03166585CrossRefGoogle Scholar
  54. 54.
    Milov AD, Tsvetkov YD, Maryasov AG, Gobbo M, Prinzivalli C, De Zotti M, Formaggio F, Toniolo C (2012) Conformational properties of the spin-labeled tylopeptin B and heptaibin peptaibiotics based on PELDOR spectroscopy data. Appl Magn Reson 44(4):495–508.  https://doi.org/10.1007/s00723-012-0402-1CrossRefGoogle Scholar
  55. 55.
    Milov AD, Grishin YA, Dzuba SA, Tsvetkov YD (2011) Effect of pumping pulse duration on echo signal amplitude in four-pulse PELDOR. Appl Magn Reson 41(1):59–67.  https://doi.org/10.1007/s00723-011-0232-6CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yuri D. Tsvetkov
    • 1
  • Michael K. Bowman
    • 2
  • Yuri A. Grishin
    • 3
  1. 1.The Voevodsky Institute of Chemical Kinetics and CombustionNovosibirskRussia
  2. 2.Department of Chemistry and BiochemistryUniversity of AlabamaTuscaloosaUSA
  3. 3.The Voevodsky Institute of Chemical Kinetics and CombustionNovosibirskRussia

Personalised recommendations