Advertisement

Bees Detection on Images: Study of Different Color Models for Neural Networks

  • Jerzy Dembski
  • Julian Szymański
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11319)

Abstract

This paper presents an approach to bee detection in video streams using a neural network classifier. We describe the motivation for our research and the methodology of data acquisition. The main contribution to this work is a comparison of different color models used as an input format for a feedforward convolutional architecture applied to bee detection. The detection process has is based on a neural binary classifier that classifies ROI windows in frames taken from video streams to determine whether or not the window contains bees. Due to the type of application, we tested two methods of partitioning data into training and test subsets: video-based (some video for training, the rest for testing) and individual based (some bees for training, the rest for testing). The tournament-based algorithm was implemented to aggregate the results of classification. The manually tagged datasets we used for our experiments have been made publicly available. Based on our analysis of the results, we drew conclusions that the best color models are RGB and 3-channeled color models: RGB and HSV are significantly better than black & white or the H channel from HSV.

Keywords

Automatic bee’s image classification Deep neural networks Bee farming 

Notes

Acknowledgements

This work was partially supported by funds from the Faculty of Electronics Telecommunications and Informatics, Gdansk University of Technology and Cost Action CA 15118 FoodMC “Mathematical and Computer Science Methods for Food Science and Industry”.

References

  1. 1.
    Wario, F., Wild, B., Rojas, R., Landgraf, T.: Automatic detection and decoding of honey bee waggle dances. PloS one 12, e0188626 (2017)CrossRefGoogle Scholar
  2. 2.
    Othman, M.F., Shazali, K.: Wireless sensor network applications: a study in environment monitoring system. Proc. Eng. 41, 1204–1210 (2012)CrossRefGoogle Scholar
  3. 3.
    Tu, G.J., Hansen, M.K., Kryger, P., Ahrendt, P.: Automatic behaviour analysis system for honeybees using computer vision. Comput. Electron. Agric. 122, 10–18 (2016)CrossRefGoogle Scholar
  4. 4.
    Zacepins, A., Stalidzans, E., Meitalovs, J.: Application of information technologies in precision apiculture. In: Proceedings of the 13th International Conference on Precision Agriculture, ICPA 2012 (2012)Google Scholar
  5. 5.
    Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)Google Scholar
  6. 6.
    Bradbury, J.: Linear Predictive Coding. Mc G. Hill, New York (2000)Google Scholar
  7. 7.
    Cejrowski, T., Szymański, J., Mora, H., Gil, D.: Detection of the bee queen presence using sound analysis. In: Nguyen, N.T., Hoang, D.H., Hong, T.-P., Pham, H., Trawiński, B. (eds.) ACIIDS 2018. LNCS (LNAI), vol. 10752, pp. 297–306. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75420-8_28CrossRefGoogle Scholar
  8. 8.
    Campbell, J., Mummert, L., Sukthankar, R.: Video monitoring of honey bee colonies at the hive entrance. Vis. Obs. Anal. Anim. Insect Behav. ICPR 8, 1–4 (2008)Google Scholar
  9. 9.
    Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of Bipartite graph matching. Image Vis. Comput. 27, 950–959 (2009)CrossRefGoogle Scholar
  10. 10.
    Chiron, G., Gomez-Krämer, P., Ménard, M.: Detecting and tracking honeybees in 3D at the beehive entrance using stereo vision. EURASIP J. Image Video Process. 2013, 59 (2013)CrossRefGoogle Scholar
  11. 11.
    Evensen, G.: Data Assimilation: The Ensemble Kalman Filter. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Tiwari, A.: A deep learning approach to recognizing bees in video analysis of bee traffic (2018)Google Scholar
  13. 13.
    Rodríguez, I., Branson, K., Acuña, E., Agosto-Rivera, J., Giray, T., Mégret, R.: Honeybee detection and pose estimation using convolutional neural networks. Technical report, RFIAP (2018)Google Scholar
  14. 14.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
  15. 15.
    Duan, L., Shen, M., Gao, W., Cui, S., Deussen, O.: Bee pose estimation from single images with convolutional neural network. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 2836–2840. IEEE (2017)Google Scholar
  16. 16.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  17. 17.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Porwik, P., Lisowska, A.: The Haar-wavelet transform in digital image processing: its status and achievements. Mach. Graph. Vis. 13, 79–98 (2004)zbMATHGoogle Scholar
  19. 19.
    Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57, 137–154 (2004)CrossRefGoogle Scholar
  20. 20.
    Dembski, J., Smiatacz, M.: Modular machine learning system for training object detection algorithms on a supercomputer. In: Advances in System Science, pp. 353–361 (2010)Google Scholar
  21. 21.
    Hoo-Chang, S., et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35, 1285 (2016)CrossRefGoogle Scholar
  22. 22.
    Girshick, R.B.: Fast R-CNN. In: 2015 IEEE International Conference on Computer Vision, ICCV 2015, 7–13 December 2015, Santiago, Chile, pp. 1440–1448 (2015)Google Scholar
  23. 23.
    Pinheiro, P.H.O., Collobert, R.: From image-level to pixel-level labeling with convolutional networks, pp. 1713–1721 (2015)Google Scholar
  24. 24.
    Zarit, B.D., Super, B.J., Quek, F.K.: Comparison of five color models in skin pixel classification. In: Proceedings of International Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems, pp. 58–63. IEEE (1999)Google Scholar
  25. 25.
    Blickle, T., Thiele, L.: A mathematical analysis of tournament selection. In: ICGA, pp. 9–16. Citeseer (1995)Google Scholar
  26. 26.
    Erdos, P., Jacobson, M., Lehel, J.: Graphs realizing the same degree sequences and their respective clique numbers. Graph Theory Comb. Appl. 1, 439–449 (1991)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Cannon, R.L., Dave, J.V., Bezdek, J.C.: Efficient implementation of the fuzzy c-means clustering algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 2, 248–255 (1986)CrossRefGoogle Scholar
  28. 28.
    Szymański, J., Duch, W.: Self organizing maps for visualization of categories. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012. LNCS, vol. 7663, pp. 160–167. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34475-6_20CrossRefGoogle Scholar
  29. 29.
    Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one 10, e0130140 (2015)CrossRefGoogle Scholar
  30. 30.
    Ferrari, S., Silva, M., Guarino, M., Berckmans, D.: Monitoring of swarming sounds in bee hives for early detection of the swarming period. Comput. Electron. Agric. 64, 72–77 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Electronic Telecommunications and InformaticsGdańsk University of TechnologyGdańskPoland

Personalised recommendations