Advertisement

Style-Oriented Evolutionary Design of Architectural Forms Directed by Aesthetic Measure

  • Agnieszka Mars
  • Ewa Grabska
  • Grażyna ŚlusarczykEmail author
  • Barbara Strug
Conference paper

Abstract

This paper deals with an aesthetic and style-oriented approach to architectural design based on the combination of three theories—recognition, generation and evaluation.

References

  1. 1.
    Bentley PJ (1999) Evolutionary design by computers. Morgan KaufmannGoogle Scholar
  2. 2.
    Jupp J, Gero JS (2010) Let’s look at style: visual and spatial representation and reasoning in design. In: Argamon S, Burns K, Dubnov S (eds) The structure of style. Springer, New York, pp 159–195CrossRefGoogle Scholar
  3. 3.
    Schnier T, Gero JS (1996) Learning representations for creative design using evolution. AIEDAM 10:175–177CrossRefGoogle Scholar
  4. 4.
    Ding L, Gero JS (2001) The emergence of the representation of style in design. Env Plann B Urban Analytics City Sci 28:707–731Google Scholar
  5. 5.
    Wallendorf M, Zinkhan G, Zinkhan LS (1981) Cognitive complexity and aesthetic preference. In: Hirschman EC, Holbrook MB (eds) SV—symbolic consumer behaviour. Association for Consumer Research, New York, pp 52–59Google Scholar
  6. 6.
    Biederman I (1987) Recognition-by-components: a theory of human image understanding. Psychol Rev 94:115–147CrossRefGoogle Scholar
  7. 7.
    Marr D (1982) Vision. Freeman, San FranciscoGoogle Scholar
  8. 8.
    Ware C (2008) Visual thinking for design. Morgan Kaufmann, ElsevierGoogle Scholar
  9. 9.
    Alexander C, Ishikawa S, Silverstein M, Jacobson M, Fiksdahl-King I, Angel S (1977) A pattern language: towns, buildings, construction. Oxford University PressGoogle Scholar
  10. 10.
    Simon H (1975) Style in design. In: Eastman C (ed) Spatial synthesis in computer-aided building design. Applied Science, London, pp 287–309Google Scholar
  11. 11.
    Park SH, Gero JS (2000) Categorisation of shapes using shape features. In: Gero JS (ed) Artificial intelligence in design’00. Kluwer, Dordrecht, pp 203–223CrossRefGoogle Scholar
  12. 12.
    Davies J, Goel AK (2001) Visual analogy in problem solving. Proceedings of international joint conference on artificial intelligence. Morgan Kaufmann, Seattle, pp 377–382Google Scholar
  13. 13.
    Gero JS, Kazakov V (2001) Entropic similarity and complexity measures for architectural drawings. Visual and spatial reasoning in design II. Key Cent Des Comput Cogn Sydney:147–161Google Scholar
  14. 14.
    Forbus K, Tomai E, Usher J (2003) Qualitative spatial reasoning for visual grouping in sketches. In: Proceedings of 16th international workshop on qualitative reasoning, Brasilia, pp 79–86Google Scholar
  15. 15.
    Dowling E (2004) New classicism: the rebirth of traditional architecture. Rizzoli International Publications, New YorkGoogle Scholar
  16. 16.
    Dunlop C, Associates (2003) Architectural styles. Dearborn Real EstateGoogle Scholar
  17. 17.
    Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, MAzbMATHGoogle Scholar
  18. 18.
    Holland JH (1975) Adaptation in natural and artificial systems. Ann ArborGoogle Scholar
  19. 19.
    Grabska E, Borkowski A (1996) Assisting creativity by composite representation. In: Artificial intelligence in design ‘96, Kluwer Academic Publishers, pp 743–759Google Scholar
  20. 20.
    Ślusarczyk G, Strug B, Stasiak K (2016) An ontology-based graph approach to support buildings design conformity with a given style. Appl Ontol 11:279–300CrossRefGoogle Scholar
  21. 21.
    Strug B, Ślusarczyk G, Grabska E (2017) Design patterns in generation of artefacts in required styles. In: Generative art 2016: proceedings of XIX generative art conference, 2016, pp 71–78Google Scholar
  22. 22.
    Rozenberg G (1997) Handbook of graph grammars and computing by graph transformations, vol 1. Fundations, World Scientific LondonCrossRefGoogle Scholar
  23. 23.
    Strug B, Grabska E, Ślusarczyk G (2014) Supporting the design process with hypergraph genetic operators. Adv Eng Inform 28:11–27CrossRefGoogle Scholar
  24. 24.
    Mars A, Grabska E (2015) Towards an implementable aesthetic measure for collaborative architecture design. LNCS 9320:72–75Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Agnieszka Mars
    • 1
  • Ewa Grabska
    • 1
  • Grażyna Ślusarczyk
    • 1
    Email author
  • Barbara Strug
    • 1
  1. 1.Jagiellonian UniversityKrakówPoland

Personalised recommendations