Advertisement

Information Visualisation for Project Management: Case Study of Bath Formula Student Project

  • Nataliya MoglesEmail author
  • Lia Emanuel
  • Chris Snider
  • James Gopsill
  • Sian Joel-Edgar
  • Kevin Robinson
  • Ben Hicks
  • David Jones
  • Linda Newnes
Conference paper

Abstract

This paper contributes to a better understanding and design of dashboards for monitoring of engineering projects based on the projects’ digital footprint and user-centered design approach.

Notes

Acknowledgements

This work was done under the auspices of the Language of Collaborative Manufacturing (LOCM) project funded by the Engineering and Physical Sciences Research Council (EPSRC), UK, grant reference EP/K014196/2. The study was conducted in accordance with the local departmental codes of ethics (Department of Computer Science, University of Bath) and the University of Bath’s concordat for research integrity. All data, including the consent forms, was stored and processed in line with the EU General Data Protection Regulation (GDPR) guidelines of anonymity.

References

  1. 1.
    Arias-Hernandez R, Fisher B (2013) A qualitative methodology for design of visual analytic tools for emergency operation centers. In: proceedings of the international conference on system sciences, 126–135Google Scholar
  2. 2.
    Bačić D, Fadlalla A (2016) Business information visualization intellectual contributions: an integrative framework of visualization capabilities and dimensions of visual intelligence. Decis Support Syst 89:77–86CrossRefGoogle Scholar
  3. 3.
    Briggs D (2012) Data distribution on the 787, bringing model based definition to the world. In: Collaboration and interoperability congress, Denver, 21–23 May 2012Google Scholar
  4. 4.
    Card SK, Mackinlay JD, Shneiderman B (1999) Readings in information visualization: using vision to think. Morgan Kaufmann, San Diego, USAGoogle Scholar
  5. 5.
    Carpendale S (2008) Evaluating information visualizations. In: Information visualization: human-centered issues and perspectives, 19–45Google Scholar
  6. 6.
    Chen Y, Yang J, Ribarsky W (2009) Toward effective insight management in visual analytics systems. In: IEEE pacific visualization symposium 2009, 49–56Google Scholar
  7. 7.
    Choe EK, Lee B, Schraefel MC (2015) Characterizing visualization insights from quantified selfers’ personal data presentations. IEEE Comput Graphics Appl 35(4):28–37CrossRefGoogle Scholar
  8. 8.
    Daintith J, Wright E (2008) A dictionary of computing, 6 edn. Oxford university pressGoogle Scholar
  9. 9.
    Ellis G, Dix A (2006) An explorative analysis of user evaluation studies in information visualisation. In: Proceedings of the BELIV’2006, ACM press, 1–7Google Scholar
  10. 10.
    Gaardboe R, SVARRE T, Kanstrup AM (2015) Characteristics of business intelligence and big data in e-government: preliminary findings. In: Innovation and the public sector, p. 109Google Scholar
  11. 11.
    Hicks B, McAlpine H, Gopsill J, Snider C (2016) The digital footprint of engineering design projects: sensors for project health monitoring. In: International conference on design computing and cognition (DCC 2016)Google Scholar
  12. 12.
    Hicks BJ, Culley SJ, Allen RD, Mullineux G (2002) A framework for the requirements of capturing, storing and reusing information and knowledge in engineering design. Int J Inf Manage 22:263–280CrossRefGoogle Scholar
  13. 13.
    IMechE (2017) Formula Student: http://events.imeche.org/formula-studentAccessed December 14, 2017
  14. 14.
    Isenberg T, Isenberg P, Chen J, Sedlmair M, Moller T (2013) A systematic review on the practice of evaluating visualization. IEEE Trans Visual Comput Graphics 19(12):2818–2827CrossRefGoogle Scholar
  15. 15.
    Jackson B, Coffey D, Thorson L, Schroeder D, Ellingson AM, Nuckley DJ Keefe, DF (2012). Toward mixed method evaluations of scientific visualisations and design process an evaluation tool. In Proceedings of the BELIV’2012, ACM press, 4Google Scholar
  16. 16.
    Lam H, Bertini E, Isenberg P, Plaisant C, Carpendale S (2012) Empirical studies in information visualization: seven scenarios. IEEE Trans Visual Comput Graphics 18(9):1520–1536CrossRefGoogle Scholar
  17. 17.
    Lurie NH, Mason CH (2007) Visual representation: implications for decision making. J Mark 71(1):160–177CrossRefGoogle Scholar
  18. 18.
    Miles MB, Huberman AM (1994) Qualitative data analysis: an expanded sourcebook. SageGoogle Scholar
  19. 19.
    Munzner T (2009) A nested model for visualization design and validation. IEEE Trans Visual Comput Graphics 15(6):921–928CrossRefGoogle Scholar
  20. 20.
    North C (2006). Toward measuring visualization insight. IEEE Comput Graph Appl: Vis Viewpoints, May/June 2006, 20–23Google Scholar
  21. 21.
    Plaisant C (2004) The challenge of information visualization evaluation. In: IEEE Proceedings of the advanced visual interfaces 04, 109–116Google Scholar
  22. 22.
    Plaisant C, Fekete JD, Grinstein G (2008) Promoting insight-based evaluation of visualizations: from contest to benchmark repository. IEEE Trans Visual Comput Graphics 14(1):120–134CrossRefGoogle Scholar
  23. 23.
    Raymond L, Bergeron F (2008) Project management information systems: an empirical study of their impact on project managers and project success. Int J Project Manage 26:213–220CrossRefGoogle Scholar
  24. 24.
    Saraiya P, North C, Duca K (2005) An insight-based methodology for evaluation bioinformatics visualizations. IEEE Trans Visual Comput Graphics 11(4):1–14CrossRefGoogle Scholar
  25. 25.
    Sedlmair M, Meyer M, Munzer T (2012) Design study methodology: reflections from the trenches and the stacks. IEEE Trans Visual Comput Graphics 18(12):2431–2440CrossRefGoogle Scholar
  26. 26.
    Shneiderman B, Plaisant C (2006) Strategies for evaluating information visualization tools: multi-dimensional in-depth long-term case studies. In Proceedings of the BELIV’2006, ACM press, 1–7Google Scholar
  27. 27.
    Spence R (2001) Information visualization. Addison-WesleyGoogle Scholar
  28. 28.
    Trieu VH (2017) Getting value from business intelligence systems: a review and research agenda. Decis Support Syst 93:111–124CrossRefGoogle Scholar
  29. 29.
    Tableau software (2013) Technical specifications—Tableau desktop http://www.tableausoftware.com/products/desktop/techspecsAccessed December 6, 2017
  30. 30.
    Watson HJ, Wixom BH (2007) The current state of business intelligence. IEEE IT Syst Perspect, 96–99CrossRefGoogle Scholar
  31. 31.
    Wixom BH, Watson HJ, Reynolds AM, Hoffer JA (2008) Continental airlines continues to soar with business intelligence. Inform Syst Manage 25(2):102–112CrossRefGoogle Scholar
  32. 32.
    Woźniak P, Valton R, Fjeld M (2015) Volvo single view of vehicle: building big data service from scratch in the automotive industry. In Proceedings of the CHI 2015, ACM press, 671–678Google Scholar
  33. 33.
    Wu I, Hsieh S (2012) A framework for facilitating multi-dimensional information integration, management and visualization in engineering projects. Autom Constr 23:71–86CrossRefGoogle Scholar
  34. 34.
    Yi JS, Kang YA, Stasko JT, Jacko JA (2008) Understanding and characterizing insights: how do people gain insights using information visualization?. In: Proceedings of the 2008 workshop on BEyond time and errors: novel evaLuation methods for Information Visualization ACM, April 2008, (p. 4)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nataliya Mogles
    • 1
    Email author
  • Lia Emanuel
    • 3
  • Chris Snider
    • 1
  • James Gopsill
    • 2
  • Sian Joel-Edgar
    • 4
  • Kevin Robinson
    • 2
  • Ben Hicks
    • 1
  • David Jones
    • 1
  • Linda Newnes
    • 2
  1. 1.University of BristolBristolUK
  2. 2.University of BathBathUK
  3. 3.Nomensa CompanyBristolUK
  4. 4.Aston Business SchoolAston UniversityBirminghamUK

Personalised recommendations