Advertisement

Unsuccessful External Search: Using Neuroimaging to Understand Fruitless Periods of Design Ideation Involving Inspirational Stimuli

  • Kosa Goucher-LambertEmail author
  • Jarrod Moss
  • Jonathan Cagan
Conference paper

Abstract

This paper uses neuroimaging to provide insight into specific cognitive processes involved in design conceptualization with and without the support of inspirational stimuli. In particular, this work focuses on neural activity during unsuccessful search for a design solution. Twenty-one participants completed a brainstorming task while undergoing functional magnetic resonance imaging (fMRI).

Notes

Acknowledgements

The authors would like to thank the staff at the Carnegie Mellon University Scientific Imaging and Brain Research Center for their assistance with fMRI data acquisition. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under grant DGE125252, the National Science Foundation under grant CMMI1233864, and the Air Force Office of Scientific Research under grant #FA9550-16-1-0049.

References

  1. 1.
    Findler NV (1981) Analogical reasoning in design processes. Des Stud 2(1):45–51.  https://doi.org/10.1016/0142-694X(81)90029-6CrossRefGoogle Scholar
  2. 2.
    Chan J, Fu K, Schunn C, Cagan J, Wood K, Kotovsky K (2011) On the benefits and pitfalls of analogies for innovative design: ideation performance based on analogical distance, commonness, and modality of examples. J Mech Des 133(8):81004.  https://doi.org/10.1115/1.4004396CrossRefGoogle Scholar
  3. 3.
    Dorst K, Royakkers L (2006) The design analogy: a model for moral problem solving. Des Stud 27(6):633–656.  https://doi.org/10.1016/j.destud.2006.05.002CrossRefGoogle Scholar
  4. 4.
    Moreno DP, Hernández AA, Yang MC, Otto KN, Hölttä-Otto K, Linsey JS, … Linden A (2014) Fundamental studies in design-by-analogy: a focus on domain-knowledge experts and applications to transactional design problems. Des Stud 35(3):232–272.  https://doi.org/10.1016/j.destud.2013.11.002CrossRefGoogle Scholar
  5. 5.
    Fu K, Chan J, Cagan J, Kotovsky K, Schunn C, Wood K (2013) The meaning of “near” and “far”: the impact of structuring design databases and the effect of distance of analogy on design output. J Mech Des 135(2):21007.  https://doi.org/10.1115/1.4023158CrossRefGoogle Scholar
  6. 6.
    Linsey JS, Wood KL, Markman AB (2008) Modality and representation in analogy. AI EDAM 22:85–100.  https://doi.org/10.1017/S0890060408000061CrossRefGoogle Scholar
  7. 7.
    Murphy J, Fu K, Otto K, Yang M, Jensen D, Wood K (2014) Function based design-by-analogy: a functional vector approach to analogical search. J Mech Des 136(10):1–16.  https://doi.org/10.1115/1.4028093CrossRefGoogle Scholar
  8. 8.
    Tseng I, Moss J, Cagan J, Kotovsky K (2008) The role of timing and analogical similarity in the stimulation of idea generation in design. Des Stud 29(3):203–221.  https://doi.org/10.1016/j.destud.2008.01.003CrossRefGoogle Scholar
  9. 9.
    Sternberg RJ (1977) Component processes in analogical reasoning. Psychol Rev 84(4):353–378.  https://doi.org/10.1037/0033-295X.84.4.353CrossRefGoogle Scholar
  10. 10.
    Nguyen TA, Zeng Y (2010) Analysis of design activities using EEG signals. In: Volume 5: 22nd international conference on design theory and methodology; special conference on mechanical vibration and noise, pp 277–286.  https://doi.org/10.1115/detc2010-28477
  11. 11.
    Hu W-L, Booth JW, Reid T (2017) The relationship between design outcomes and mental states during ideation. J Mech Des 1–16.  https://doi.org/10.1115/1.4036131CrossRefGoogle Scholar
  12. 12.
    Alexiou K, Zamenopoulos T, Johnson JH, Gilbert SJ (2009) Exploring the neurological basis of design cognition using brain imaging: some preliminary results. Des Stud 30(6):623–647.  https://doi.org/10.1016/j.destud.2009.05.002CrossRefGoogle Scholar
  13. 13.
    Goucher-Lambert K, Moss J, Cagan J (2017) Inside the mind: using neuroimaging to understand moral product preference judgments involving sustainability (IDETC2016-59406). ASME J Mech Des 139(4):1–12.  https://doi.org/10.1115/1.4035859CrossRefGoogle Scholar
  14. 14.
    Sylcott B, Cagan J, Tabibnia G (2013) Understanding consumer tradeoffs between form and function through metaconjoint and cognitive neuroscience analyses. J Mech Des 135(10):101002.  https://doi.org/10.1115/1.4024975CrossRefGoogle Scholar
  15. 15.
    Goucher-Lambert K, Cagan J (2015) The impact of sustainability on consumer preference judgments of product attributes. J Mech Des 137(8):1–11.  https://doi.org/10.1115/1.4030271CrossRefGoogle Scholar
  16. 16.
    Gilbert SJ, Zamenopoulos T, Alexiou K, Johnson JH (2010) Involvement of right dorsolateral prefrontal cortex in ill-structured design cognition: an fMRI study. Brain Res 1312:79–88.  https://doi.org/10.1016/j.brainres.2009.11.045CrossRefGoogle Scholar
  17. 17.
    Saggar M, Quintin E-M, Bott NT, Kienitz E, Chien Y-H, Hong DW-C, … Reiss AL (2016) Changes in brain activation associated with spontaneous improvization and figural creativity after design-thinking-based training: a longitudinal fMRI Study cerebral cortex advance access. Cerebral Cortex 1–11.  https://doi.org/10.1093/cercor/bhw171
  18. 18.
    Saggar M, Quintin E-M, Kienitz E, Bott NT, Sun Z, Hong W-C, … Reiss AL (2015) Pictionary-based fMRI paradigm to study the neural correlates of spontaneous improvisation and figural creativity. Sci Rep 5(5):10894.  https://doi.org/10.1038/srep10894
  19. 19.
    Gentner D (1983) Structure-mapping: a theoretical framework for analogy. Cogn Sci 7(2):155–170.  https://doi.org/10.1016/S0364-0213(83)80009-3CrossRefGoogle Scholar
  20. 20.
    Linsey JS, Markman AB, Wood KL (2008) WordTrees: a method for design-by-analogy. In: Proceedings of the 2008 ASEE Annual ConferenceGoogle Scholar
  21. 21.
    Stern PC (2000) Toward a coherent theory of environmentally significant behavior. J Soc Issues 56(3):407–424.  https://doi.org/10.1111/0022-4537.00175CrossRefGoogle Scholar
  22. 22.
    Damle A, Smith PJ (2009) Biasing cognitive processes during design: the effects of color. Des Stud 30(5):521–540.  https://doi.org/10.1016/j.destud.2009.01.001CrossRefGoogle Scholar
  23. 23.
    Cross N (2004) Expertise in design: an overview. Des Stud 25(5):427–441.  https://doi.org/10.1016/j.destud.2004.06.002CrossRefGoogle Scholar
  24. 24.
    Visser W (1996) Two functions of analogical reasoning in design: a cognitive-psychology approach. Des Stud 17(4 Special Issue):417–434.  https://doi.org/10.1016/s0142-694x(96)00020-8CrossRefGoogle Scholar
  25. 25.
    Wilson JO, Rosen D, Nelson BA, Yen J (2010) The effects of biological examples in idea generation. Des Stud 31(2):169–186.  https://doi.org/10.1016/j.destud.2009.10.003CrossRefGoogle Scholar
  26. 26.
    Jansson DG, Smith SM (1991) Design fixation. Des Stud 12(1):3–11.  https://doi.org/10.1016/0142-694X(91)90003-FCrossRefGoogle Scholar
  27. 27.
    Krawczyk DC, McClelland MM, Donovan CM, Tillman GD, Maguire MJ (2010) An fMRI investigation of cognitive stages in reasoning by analogy. Brain Res 1342:63–73.  https://doi.org/10.1016/j.brainres.2010.04.039CrossRefGoogle Scholar
  28. 28.
    Cho S, Holyoak KJ, Cannon TD (2007) Analogical reasoning in working memory: resources shared among relational integration, interference resolution, and maintenance. Memory Cogn 35(6):1445–1455.  https://doi.org/10.3758/BF03193614CrossRefGoogle Scholar
  29. 29.
    Green AE, Cohen MS, Raab HA, Yedibalian CG, Gray JR (2015) Frontopolar activity and connectivity support dynamic conscious augmentation of creative state. Hum Brain Mapp 36(3):923–934.  https://doi.org/10.1002/hbm.22676CrossRefGoogle Scholar
  30. 30.
    Green AE, Fugelsang JA, Kraemer DJM, Shamosh NA, Dunbar KN (2006) Frontopolar cortex mediates abstract integration in analogy. Brain Res 1096(1):125–137.  https://doi.org/10.1016/j.brainres.2006.04.024CrossRefGoogle Scholar
  31. 31.
    Gonen-Yaacovi G, de Souza LC, Levy R, Urbanski M, Josse G, Volle E (2013) Rostral and caudal prefrontal contribution to creativity: a meta-analysis of functional imaging data. Front Human Neurosci 7(8):465.  https://doi.org/10.3389/fnhum.2013.00465CrossRefGoogle Scholar
  32. 32.
    Kowatari Y, Hee Lee S, Yamamura H, Nagamori Y, Levy P, Yamane S, Yamamoto M (2009) Neural networks involved in artistic creativity. Hum Brain Mapp 30(5):1678–1690.  https://doi.org/10.1002/hbm.20633CrossRefGoogle Scholar
  33. 33.
    Westphal AJ, Reggente N, Ito KL, Rissman J (2015) Shared and distinct contributions of rostrolateral prefrontal cortex to analogical reasoning and episodic memory retrieval. Hum Brain Mapp 912:896–912.  https://doi.org/10.1002/hbm.23074CrossRefGoogle Scholar
  34. 34.
    Wharton CM, Grafman J, Flitman SS, Hansen EK, Brauner J, Marks A, Honda M (2000) Toward neuroanatomical models of analogy: a positron emission tomography study of analogical mapping. Cogn Psychol 40(3):173–97.  https://doi.org/10.1006/cogp.1999.0726CrossRefGoogle Scholar
  35. 35.
    Goucher-Lambert K, Cagan J (2017) Using crowdsourcing to provide analogies for designer ideation in a cognitive study. In: International conference on engineering design. Vancouver, B.C., pp 1–11Google Scholar
  36. 36.
    Linsey JS, Viswanathan VK (2014) Overcoming cognitive challenges in bioinspired design and analogy. Biologically Inspired Des 221–244Google Scholar
  37. 37.
    Cardoso C, Badke-Schaub P (2011) The influence of different pictorial representations during idea generation. J Creat Behav 45(2):130–146.  https://doi.org/10.1002/j.2162-6057.2011.tb01092.xCrossRefGoogle Scholar
  38. 38.
    Toh CA, Miller SR (2014) The impact of example modality and physical interactions on design creativity. J Mech Des (Trans ASME) 136(9):[np].  https://doi.org/10.1115/1.4027639CrossRefGoogle Scholar
  39. 39.
    Miller SR, Bailey BP, Kirlik A (2014) Exploring the utility of Bayesian truth serum for assessing design knowledge. Human-Comput Interact 29(5–6):487–515.  https://doi.org/10.1080/07370024.2013.870393CrossRefGoogle Scholar
  40. 40.
    Linsey JS, Markman AB, Wood KL (2012) Design by analogy: a study of the WordTree method for problem re-representation. J Mech Des 134(4):041009.  https://doi.org/10.1115/1.4006145CrossRefGoogle Scholar
  41. 41.
    Goldschmidt G, Smolkov M (2006) Variances in the impact of visual stimuli on design problem solving performance. Des Stud 27(5):549–569.  https://doi.org/10.1016/j.destud.2006.01.002CrossRefGoogle Scholar
  42. 42.
    Purcell AT, Williams P, Gero JS, Colbron B (1993) Fixation effects: do they exist in design problem solving? Environ Plan 20(3):333–345.  https://doi.org/10.1068/b200333CrossRefGoogle Scholar
  43. 43.
    Viswanathan VK, Linsey JS (2013) Design fixation and its mitigation: a study on the role of expertise. J Mech Des 135:51008.  https://doi.org/10.1115/1.4024123CrossRefGoogle Scholar
  44. 44.
    Schneider W, Eschman A, Zuccolotto A (2002) E-Prime reference guide. Psychol Softw Tools 3(1):1.  https://doi.org/10.1186/1756-0381-3-1CrossRefGoogle Scholar
  45. 45.
    Chein JM, Schneider W (2003) Designing effective fMRI experiments. Handb Neuropsychol, 2nd edn 9:299–325Google Scholar
  46. 46.
    Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res Int J 29(3):162–173CrossRefGoogle Scholar
  47. 47.
    Gorgolewski K, Burns CD, Madison C, Clark D, Halchenko YO, Waskom ML, Ghosh SS (2011) Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Front Neuroinformatics 5:13.  https://doi.org/10.3389/fninf.2011.00013CrossRefGoogle Scholar
  48. 48.
    Petersen SE, Dubis JW (2012) The mixed block/event-related design. NeuroImage 62(2):1177–1184.  https://doi.org/10.1016/j.neuroimage.2011.09.084CrossRefGoogle Scholar
  49. 49.
    Goucher-Lambert K, Moss J, Cagan J (2017) An fMRI investigation of near and far analogical reasoning during design ideation. Des Stud (submitted)Google Scholar
  50. 50.
    Moss J, Kotovsky K, Cagan J (2007) The influence of open goals on the acquisition of problem-relevant information. J Exp Psychol Learn Mem Cogn 33(5):876–891.  https://doi.org/10.1037/0278-7393.33.5.876CrossRefGoogle Scholar
  51. 51.
    Kounios J, Frymiare JL, Bowden EM, Fleck JI, Subramaniam K, Parrish TB, Jung-beeman M (2006) Subsequent solution by sudden insight. Psychol Sci 17(10):882–890CrossRefGoogle Scholar
  52. 52.
    Leech R, Sharp DJ (2014) The role of the posterior cingulate cortex in cognition and disease. Brain 137(1):12–32.  https://doi.org/10.1093/brain/awt162CrossRefGoogle Scholar
  53. 53.
    Burgess PW, Dumontheil I, Gilbert SJ (2007) The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends Cogn Sci 11(7):290–298.  https://doi.org/10.1016/j.tics.2007.05.004CrossRefGoogle Scholar
  54. 54.
    Moss J, Kotovsky K, Cagan J (2011) The effect of incidental hints when problems are suspended before, during, or after an impasse. J Exp Psychol Learn Mem Cogn 37(1):140–148.  https://doi.org/10.1037/a0021206CrossRefGoogle Scholar
  55. 55.
    Vasconcelos LA, Crilly N (2016) Inspiration and fixation: questions, methods, findings, and challenges. Des Stud 42:1–32.  https://doi.org/10.1016/j.destud.2015.11.001CrossRefGoogle Scholar
  56. 56.
    Goucher-Lambert K, Moss J, Cagan J (2016) A meta-analytic approach for uncovering neural activation patterns of sustainable product preference decisions. In: Design computing and cognition conference 2016, pp 1–20Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kosa Goucher-Lambert
    • 1
    Email author
  • Jarrod Moss
    • 2
  • Jonathan Cagan
    • 1
  1. 1.Carnegie Mellon UniversityPittsburghUSA
  2. 2.Mississippi State UniversityStarkvilleUSA

Personalised recommendations