Advertisement

An Improved BTK Algorithm Based on Cell-Like P System with Active Membranes

  • Linlin Jia
  • Laisheng Xiang
  • Xiyu LiuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11353)

Abstract

BTK algorithm is an efficient algorithm for mining top-rank-k frequent patterns. It proposes new tree and list structures to store the information, employs subsume index concept, early pruning strategy and threshold raising method to reduce the search space. In this paper, a fast BTK algorithm, called CP-BTK algorithm is proposed, which is based on cell-like P system with active membranes. Cell-like P system is new computing model inspired from biological cells, operations in cell-like P system are distributed and parallel, so it can save time and improve the efficiency of algorithm greatly. And finally a example is given to illustrate the practicability and effectiveness of the proposed algorithm.

Keywords

Pattern mining Top-rank-k frequent patterns Cell-like P system Membrane computing 

Notes

Acknowledgments

Project is supported by National Natural Science Foundation of China(nos.61472231, 61502283, 61640201, 61170038), Social Science Foundation of Shandong Province, China (nos.16BGLJ06, 11CGLJ22), Ministry of Education of Humanities and Social Science Research Project, China (12YJA630152).

References

  1. 1.
    Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. SIGMOD Rec. 22(2), 207–216 (1993)CrossRefGoogle Scholar
  2. 2.
    Han, J.W., Pei, J., Yin, Y.W.: Mining frequent patterns without candidate generation:a frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1), 53–87 (2004)Google Scholar
  3. 3.
    Tasy, Y.J., Chiang, J.Y.: Cbar: an efficient method for mining association rules. Knowl.-Based Syst. 18(2–3), 99–105 (2005)Google Scholar
  4. 4.
    Zaki, M.J., Gouda, K.: Fast vertical mining using diffsets. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 326–335 (2003)Google Scholar
  5. 5.
    Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New algorithms for fast discovery of association rules. In: Proceedings of the Third International Conference on Knowledge Discovery and Data Mining, pp. 283–286 (1997)Google Scholar
  6. 6.
    Dam, T.L., Li, K., Fournier-Viger, P., et al.: An efficient algorithm for mining top-rank-k frequent patterns. Appl. Intell. 45(1), 96–111 (2016)CrossRefGoogle Scholar
  7. 7.
    Deng, Z.H.: Fast mining top-rank-k frequent patterns by using node-lists. Exp. Syst. Appl. 41(4), 1763–1768 (2014)CrossRefGoogle Scholar
  8. 8.
    Deng, Z.H.: Fast mining frequent itemsets using nodesets. Exp. Syst. Appl. 41(10), 4505–4512 (2014)CrossRefGoogle Scholar
  9. 9.
    Deng, Z.H., Wang, Z.H., Jiang, J.J.: A new algorithm for fast mining frequent itemsets using n-lists. Sci. China Inf. Sci. 55(9), 2008–2030 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Pǎun, G.: Computing with membranes. Comput. Syst. Sci. 61(1), 108–143 (2000)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Pǎun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press, Oxford (2010)CrossRefGoogle Scholar
  12. 12.
    Wang, J., Shi, P., Peng, H.: Membrane computing model for iir filter design. Inf. Sci. 329, 164–176 (2016)CrossRefGoogle Scholar
  13. 13.
    Singh, G., Deep, K.: A new membrane algorithm using the rules of particle swarm optimization incorporated within the framework of cell-like p-systems to solve sudoku. Appl. Soft Comput. 45, 27–39 (2016)CrossRefGoogle Scholar
  14. 14.
    Zhang, G., Rong, H., Cheng, J., Qin, Y.: A population membrane-system-inspired evolutionary algorithm for distribution network reconfiguration. Chin. J. Electron. 23(3), 437–441 (2014)Google Scholar
  15. 15.
    Deng, Z.H., Fang, G.D.: Mining top-rank-k frequent patterns. In: International Conference on Machine Learning and Cybernetics, pp. 851–856 (2007)Google Scholar
  16. 16.
    Song, W., Yang, B.R., Xu, Z.Y.: Index-bit table fi: an improved algorithm for mining frequent itemsets. Knowl.-Based Syst. 21(6), 507–513 (2008)CrossRefGoogle Scholar
  17. 17.
    Pǎun, G.: Membrane Computing. Springer, Berlin (2002).  https://doi.org/10.1007/978-3-642-56196-2CrossRefzbMATHGoogle Scholar
  18. 18.
    Zandron, C., Ferretti, C., Mauri G.: Solving np-complete problems using p systems with active membranes. In: International Conference on Unconventional MODELS of Computation, pp. 289–301 (2000)Google Scholar
  19. 19.
    Xiyu, L., Yuzhen, Z., Minghe, S.: An improved apriori algorithm based on an evolution-communication tissue-like p system with promoters and inhibitors. Discret. Dyn. Nat. Soc. 2017(1), 1–11 (2017)Google Scholar
  20. 20.
    Pǎun, G., Suzuki, Y., Tanaka, H.: On the power of membrane division in p systems. Theor. Comput. Sci. 324(1), 61–85 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.College of Management Science and EngineeringShandong Normal UniversityJinanChina

Personalised recommendations