Advertisement

Constant Factor Approximation for Intersecting Line Segments with Disks

  • Konstantin KobylkinEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11353)

Abstract

Fast constant factor approximation algorithms are devised for a problem of intersecting a set of n straight line segments with the smallest cardinality set of disks of fixed radii \(r>0\) where the set of segments forms a straight line drawing \(G=(V,E)\) of a planar graph without edge crossings. Exploiting its tough connection with the geometric Hitting Set problem we give \((100+\varepsilon )\)-approximate \(O(n^4\log n)\)-time and \(O(n^2\log n)\)-space algorithm based on the modified Agarwal-Pan reweighting algorithm, where \(\varepsilon >0\) is an arbitrary small constant. Moreover, \(O(n^2\log n)\)-time and \(O(n^2)\)-space 18-approximation is designed for the case where G is any subgraph of a Gabriel graph.

Keywords

Computational geometry Approximation algorithms Hitting set problem Epsilon nets Line segments 

References

  1. 1.
    Agarwal, P.K., Efrat, A., Ganjugunte, S.K., Hay, D., Sankararaman, S., Zussman, G.: The resilience of WDM networks to probabilistic geographical failures. IEEE/ACM Trans. Netw. 21(5), 1525–1538 (2013)CrossRefGoogle Scholar
  2. 2.
    Agarwal, P., Pan, J.: Near-linear algorithms for geometric hitting sets and set covers. In: Proceedings of 30th Annual Symposium on Computational geometry, pp. 271–279 (2014)Google Scholar
  3. 3.
    Antunes, D., Mathieu, C., Mustafa, N.: Combinatorics of local search: an optimal 4-local Hall’s theorem for planar graphs. In: Proceedings of 25th Annual European Symposium on Algorithms (ESA), vol. 87, pp. 8:1–8:13 (2017)Google Scholar
  4. 4.
    Biniaz, A., Liu, P., Maheshwari, A., Smid, M.: Approximation algorithms for the unit disk cover problem in 2D and 3D. Comput. Geom. 60, 8–18 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brévilliers, M., Chevallier, N., Schmitt, D.: Triangulations of line segment sets in the plane. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 388–399. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-77050-3_32CrossRefzbMATHGoogle Scholar
  6. 6.
    Bus, N., Mustafa, N., Ray, S.: Practical and efficient algorithms for the geometric hitting set problem. Discret. Appl. Math. 240, 25–32 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bus, N., Garg, S., Mustafa, N., Ray, S.: Limits of local search: quality and efficiency. Discret. Comput. Geom. 57(3), 607–624 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dash, D., Bishnu, A., Gupta, A., Nandy, S.C.: Approximation algorithms for deployment of sensors for line segment coverage in wireless sensor networks. Wirel. Netw. 19(5), 857–870 (2013)CrossRefGoogle Scholar
  9. 9.
    Haussler, D., Welzl, E.: \(\varepsilon \)-nets and simplex range queries. Discret. Comput. Geom. 2(2), 127–151 (1987)Google Scholar
  10. 10.
    Kobylkin, K.: Stabbing line segments with disks: complexity and approximation algorithms. In: van der Aalst, W.M.P., et al. (eds.) AIST 2017. LNCS, vol. 10716, pp. 356–367. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-73013-4_33CrossRefGoogle Scholar
  11. 11.
    Mustafa, N., Ray, S.: Improved results on geometric hitting set problems. Discret. Comput. Geom. 44(4), 883–895 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Pyrga, E., Ray, S.: New existence proofs for \(\varepsilon \)-nets. In: Proceedings of the 24th Annual Symposium on Computational Geometry, pp. 199–207 (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Mathematics and Mechanics, Ural Branch of RASYekaterinburgRussia
  2. 2.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations