Advertisement

Calibration of a Water Distribution Network with Limited Field Measures: The Case Study of Castellammare di Stabia (Naples, Italy)

  • Armado Di Nardo
  • Michele Di Natale
  • Anna Di Mauro
  • Giovanni Francesco SantonastasoEmail author
  • Andrea Palomba
  • Stefano Locoratolo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11353)

Abstract

The great amount of big data provided to the water utilities from the application of smart technologies represents a key role for the future of water analysis and management. Water big data (WBD) can offer various ways of employment to support water network analysis and to achieve a smart management of the system. In this regard, one of the main application of WBD is the implementation and calibration of the hydraulic model of a water distribution network (WDN). Yet, to date, WDNs are still not fully-equipped and, consequently, WBD and IoT in water sectors are still limited. The paper presents a case study of calibration of Castellammare di Stabia, with limited field measures and a high level of water losses, highlighting the low calibration reliability without the availability of WBD about water demand and water losses.

Keywords

Hydraulic model Calibration Water demand Water losses Water big data Smart water network 

References

  1. 1.
    Candelieri, A., Archetti, F.: Smart water in urban distribution networks: limited financial capacity and big data analytics. Wit Trans. Built. Env. 139, 63–73 (2014)CrossRefGoogle Scholar
  2. 2.
    Alvesa, Z., Muranhob, J., Albuquerquee, T., Ferreira, A.: Water distribution network’s modeling and calibration. A case study based on scarce inventory data. In: 12th International Conference on Computing and Control for the Water Industry, CCWI2013, pp. 31–40 (2013)Google Scholar
  3. 3.
    Lingireddy, S., Ormsbee, L.E.: Hydraulic network calibration using genetic optimization. Civ. Eng. Environ. Syst. 19(1), 13–39 (2002)CrossRefGoogle Scholar
  4. 4.
    Reddy, P.V.N., Sridharan, K., Rao, P.V.: WLS method for parameter estimation in water distribution networks. J. Water Resour. Plan. Manag. 122(3), 157–164 (1996)CrossRefGoogle Scholar
  5. 5.
    Jowitt, P.W., Xu, C.: Optimal valve control in water distribution networks. J. Water Resour. Plan. Mange. 116(4), 455–472 (1990)CrossRefGoogle Scholar
  6. 6.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)zbMATHGoogle Scholar
  7. 7.
    Cominola, A., Spang, E.S., Giuliani, M., Castelletti, A., Lund, J.R., Logebdz, F.J.: Segmentation analysis of residential water-electricity demand for customized demand-side management programs. J. Clean. Prod. 172, 1607–1619 (2018)CrossRefGoogle Scholar
  8. 8.
    Rossman, L.A.: EPANET2 users manual. US EPA, Cincinnati (2000)Google Scholar
  9. 9.
    Di Nardo, A., Di Natale, M., Gisonni, C., Iervolino, M.: A genetic algorithm for demand pattern and leakage estimation in a water distribution network. J. Water Supply Res. T, 35–46 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Armado Di Nardo
    • 1
  • Michele Di Natale
    • 1
  • Anna Di Mauro
    • 1
  • Giovanni Francesco Santonastaso
    • 1
    Email author
  • Andrea Palomba
    • 2
  • Stefano Locoratolo
    • 2
  1. 1.Dipartimento di IngegneriaUniversità della CampaniaAversaItaly
  2. 2.GORI Spa Gestione Ottimale Risorse IdricheErcolanoItaly

Personalised recommendations